ELF>`h@@8@ $$Ȇ XX$X$$$Ptd000QtdGNUtfQ]uo M+-(MiK @ |CEqXG~ b!AcnZ& + z6\ uAk*h[z"}j |?TDrKHw/t[Y6%LLWo6P !S.lC!9wn$[Ȇ$bȆ$ b f @ __gmon_start___init_fini__cxa_finalize_Jv_RegisterClassesPyTuple_Type_Py_NoneStructPyObject_CallObjectPyObject_Free_Py_FalseStruct_Py_TrueStructPyExc_KeyErrorPyErr_SetStringPyType_IsSubtypePyExc_TypeError_PyObject_NewPyThreadState_GetDictPyDict_GetItemWithErrorPyThreadState_GetPyErr_OccurredPyDict_SetItemPyExc_RuntimeErrorPyArg_ParseTupleAndKeywordsPyDict_NewPyObject_IsTruePyExc_ValueErrorPyLong_AsSsize_tPyLong_FromSsize_tPyLong_FromLongPyUnicode_ComparePyList_NewPyErr_SetObjectPyList_AppendPyErr_NoMemoryPyMem_Malloc_Py_ascii_whitespace_PyUnicode_Ready_PyUnicode_IsWhitespace_PyUnicode_ToDecimalDigitPyList_AsTuplePyUnicode_CompareWithASCIIStringPyObject_GenericGetAttrPyTuple_SizePyLong_AsLong__snprintf_chk__strcat_chkPyMem_Free__stack_chk_failPyUnicode_NewmemcpyPyUnicode_FromString_PyLong_NewPyExc_OverflowErrorPyArg_ParseTuplembstowcsPyUnicode_FromWideCharPyUnicode_AsUTF8StringPyUnicode_AsUTF8AndSizePyUnicode_DecodeUTF8PyDict_GetItemStringPyLong_FromUnsignedLongPyTuple_NewPyObject_CallFunctionObjArgsPy_BuildValuePyDict_SizePyErr_Clear_Py_NotImplementedStructPyUnicode_FromFormatPyObject_GenericSetAttrPyExc_AttributeErrorstrcmpPyErr_FormatPyInit__decimalPyMem_ReallocPyLong_TypePyFloat_TypePyBaseObject_TypePyType_ReadyPyDict_SetItemStringPyImport_ImportModulePyObject_GetAttrStringPyObject_CallMethodPyType_TypePyObject_CallFunctionPyModule_Create2PyModule_AddObjectPyExc_ArithmeticErrorPyErr_NewExceptionPyTuple_PackPyExc_ZeroDivisionErrorPyUnicode_InternFromStringPyModule_AddStringConstantPyModule_AddIntConstantPyFloat_AsDouble__isnan__isinfPyBool_FromLongPyComplex_TypePyObject_IsInstancePyComplex_AsCComplexPyFloat_FromDouble_PyLong_GCDPyList_SizePyList_GetItemPyFloat_FromStringPyComplex_FromDoublesPyObject_HashNotImplementedPyType_GenericNewstderr__fprintf_chkfputcabortraise__ctype_b_loc__errno_locationstrtolllocaleconv__printf_chkfwritememmove__ctype_tolower_locmemsetmallocrealloccallocfreelog10ceil__memcpy_chklibm.so.6libpython3.6m.so.rh-python36-1.0libpthread.so.0libc.so.6_edata__bss_start_end/opt/rh/rh-python36/root/usr/lib64GLIBC_2.2.5GLIBC_2.4GLIBC_2.3GLIBC_2.3.4A ui QPii ii ti ui ui @$@vH$v$$$$$$H$P$P$b$j0b$0vXb$P`b$ p$xb$pb$@b$ $b$b$@q$b$@y$8c$0c$jc$Pmc$p(d$p0d${8d$ Pd$`$d$y$d$$d$d$nXe$!jpe$(f$$f$8j8g$ahPg$@$g$g$mg$`$h$mh$nh$p $h$$i$Xji$Pj i$qj(i$ij@i$jHi$j`i$jhi$ji$ji$ji$i$ji$ji$ji$ji$jj$jj$j@j$XjHj$Pj`j$khj$jj$kj$kj$8kj$0kj$Rkj$Jkk$akk$jk k$sk0k$|kPk$k`k$rlhk$mpk$kk$kk$Fgk$kk$Fgk$kk$Fgk$kk$Fgl$kl$Fg l$k(l$Fg@l$kHl$Fg`l$khl$Fgl$kl$Fgl$kl$Fgl$Fgl$Fgl$Fgl$Fgm$Fgm$Fg m$k(m$k0m$Fg@m$kHm$Fg`m$khm$kpm$Fgm$km$Fgm$km$Fgm$km$Fgm$km$Fgn$kn$Fg n$k(n$Fg@n$kHn$Fg`n$Fgpn$kxn$Fgn$kn$Fgn$Fgn$Fgn$Fgn$Fgn$Fgo$Fg o$k(o$k0o$k8o$k@o$kHo$kPo$nXo$no$jo$Xjo$jo$Xjo$Xjo$Xjo$jo$Xjo$Xjo$Xjo$qjo$jo$jo$o$jp$lp$Fg p$@[(p$!0p$p8p$*@p$PGHp$@Pp$Xp$`p$иhp$0p$ p$kq$pLq$@q$kHq$Xq$ $`q$khq$xq$ $q$kq$pq$@ $q$kq$q$ $q$kq$q$ $q$kq$q$$r$kr$`r$@$ r$k(r$Э8r$$@r$lHr$`Xr$`$`r$ lhr$xr$$r$%lr$Vr$`$r$-lr$PRr$`$r$kr$Ar$$r$$w$nw$@w$@$w$mw$ w$B$w$Qhw$`w$ C$w$mw$Px$mx$P x$m(x$p@x$mHx$pk`x$mhx$0x$mx$x$mx$йx$mx$x$mx$ly$ ny$`@y$nHy$`hy$npy$y$ly$gy$@D$y$ky$fy$D$z$kz$ez$D$ z$k(z$d8z$ E$@z$kHz$cXz$`E$`z$khz$bxz$E$z$kz$az$@F$z$kz$az$F$z$kz$`z$G$z$kz$ _z$G${$k{$0^{$G$ {$l({$ _8{$`H$@{$ lH{$@]X{$H$`{$nh{$0Yx{$I${$%l{$T{$@I${$-l{$@P{$I${$#n{$@N{$I${$*n{$pJ{$ J$|$5n|$0D|$J$ |$k(|$?8|$J$@|$x$?$@$B$C$E$F$G$H$I$J$L$M$O$P$Q$R$S$T$U$V$X $Y($Z0$\8$_@$`H$aP$bX$c`$eh$fp$hx$i$j$k$l$m$n$o$p$s$t$u$v$w$y$z${$|$}$~$H66mH5¡#%ġ#@%¡#h%#h%#h%#h%#h%#h%#h%#hp%#h`%z#h P%r#h @%j#h 0%b#h %Z#h %R#h%J#h%B#h%:#h%2#h%*#h%"#h%#h%#h% #hp%#h`%#hP%#h@%#h0%#h %ڠ#h%Ҡ#h%ʠ#h% #h %#h!%#h"%#h#%#h$%#h%%#h&%#h'p%#h(`%z#h)P%r#h*@%j#h+0%b#h, %Z#h-%R#h.%J#h/%B#h0%:#h1%2#h2%*#h3%"#h4%#h5%#h6% #h7p%#h8`%#h9P%#h:@%#h;0%#h< %ڟ#h=%ҟ#h>%ʟ#h?%Ÿ#h@%#hA%#hB%#hC%#hD%#hE%#hF%#hGp%#hH`%z#hIP%r#hJ@%j#hK0%b#hL %Z#hM%R#hN%J#hO%B#hP%:#hQ%2#hR%*#hS%"#hT%#hU%#hV% #hWp%#hX`%#hYP%#hZ@%#h[0%#h\ %ڞ#h]%Ҟ#h^%ʞ#h_%ž#h`S1H$LL HL$Ht$p"H_L\ \ LMIEH HH<H uH$H$H$H$L$L$Ht$`HT$XH$H$H$HD$PH$H$L$HL$8L$LL$(LD$ Ht$HT$L$LD$xH$HT$pH$H|$H=H$1H\$HL\$@LT$0pH[HHI#NJL9H9 Ht Iv8uLHI#NJE1H 1HL9HIEH HH9sHuAVIE1E1I#NJAUATIv8uUH-SoJHHHILHIH?LIH)M!IHIIIIMILIHHMITHL!HL)IJIM9r[]A\A]LA^Hc HXLIH&HOHWG$GKGG G(G,Ic HXLIH LGHwG$GKGG G(G,ÍF=ws@umA AG$GAGG G(G,HHA1HH)HWHOÃËGËGËG,1ww, w#wt w Hu$HVHc Ic IXLIH&LWH9LOG$GKGG G(G,w!HFH7HHHH `@HAHLp3AWHb AVAUATIUHHcSHHH8L4ЉL$IvLrHHD$t6HMHu-L=H=L-H5THLGLGL=LL-T$HHAՅT$HLAՅLEE1LD$ 9K4JHT-1HHH9rH HT$ MILHJT%HL=HHMI)LmI)HT$HLHHL$Ht$(y=N Ht$ HL$HD-LLLHLL$Ht$D=LD$LT$LHMHH MLLD$H|$ML$L\$KT1 HHH9rHt$(H MMLHL$L$HMHLI<7H<H|$LLd-H?IT$1HHH9rH HT$ IILHt%LHLJ<H|$LH?1HH[]A\A]A^A_USHHH-z$HG H9HMH9t( tH9}HH[]Hr1tHS(1 HHH9rH[]ATIUSHHH-$HG H9HMH9t6D$  tH9}$HT$ HKt.HIuAMHH=HHEmD$}HsHK(H|iH]fAH$ LHV H$ HLH3aHDD$H$_L$8L$H1H|$LD$L9r0Ƅ$_LcHL$H}LiHE$_uLLUHL$LLLHL$8=L $fAII~K|tK|uHt2$ uH$HN $$ u7H$ 6 $'|$tH}# $HEAMHHhH[]A\A]A^A_HSHUHSLHLD$ D$ rD$ AtHھHH[]AWIAVAUIATIUSHHLvH~DŽ$LNH$PLF Hn(H$Lt$(DH$LT$(H$PH$ H$8L$(H$AL$0Ƅ$0APL9L$D$HDŽ$HDŽ$HDŽ$HDŽ$@H$Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@H$HDŽ$Ƅ$HDŽ$HDŽ$HDŽ$HDŽ$H$HDŽ$Ƅ$PHDŽ$XHDŽ$`HDŽ$hHDŽ$pH$xu%HHHuLH&!LuLHEtEIVAH$H$DD$HIEMHUHD5AD$fCINAH$H$HDL$HI EMHMD5AD$!D)H=H$HH4H$MT$Le'H$LT$8Ld$0L$ILIH9rN\fL9rID$IT$ uGH$H9C ~:Ƅ$H{(H$H&HC($u L5I$Ls 1Ҹʚ;LC(I#HAIHCHC2H$@]H$p]IEDŽ$HHHt$PE1HMcHHAT$HJAIcH|$MHLPHHLL HL$L$p8nLEH$pI9~@I)LHLLLD$[HL$ HT$MH|$LH$LmHL$ HT$MHLmHL$Ht$@MLLAnHL$ MLHHmHL$HT$HMHHmQL$pL$@H$L$PL$L$Lt$ L$LD$HD$L\$@LT$HEHD$8H+D$0AHHIH)C3IHD$(HHHIH+CI9IMNM~LH&?Lc$uH$"$$uH$ $$uH$$$uH$$H$H9tEu H}($Eu H$$@A /H[]A\A]A^A_AWIAVAUATUHSHHL^D.LfLVH$@LN LF(H$@L\$Ht$H$Ld$(L$L$L$H$H$HH$Dl$7H$pƄ$0HDŽ$H$xHDŽ$HDŽ$HHDŽ$@Ƅ$p0HDŽ$xHDŽ$HDŽ$HDŽ$@HDŽ$L%H$hH$H$Ƅ$@HDŽ$HHDŽ$PHDŽ$XHDŽ$`Ƅ$PHDŽ$`L$hB0H$pH;snH;s+H;sH;҃H;҃H;sH;҃H; H;r҃rH;s3H;{sH;j҃ RH;tsDH;^҃ 6H;s!H;gsH;V҃L9҃ H;^҃L5)HcIH=$HM5$H$pHC H9t" tH9}HH@ HH裺H$pH{(H$`%3L[(#HHCI{MAILS -H$0 XH$XHcd Icd Icd H$IHXLIHXLIDŽ$$DŽ$TL$L$8HH$H$@HHt$@E1HMcHHAT$HJAHL$HHILhIcH$Ht@HD6H9H$0~>Ht$H)HLSUH$0HL$ ILLLHH$xgHL$ Ht$ILLgHL$HT$8IHLAHL$ILLHDL$0L$L$H$@L$Lt$ L$pLL$LD$H|$8Eu'L\$(D#DT$7IL+\$AL[AE D#$uH$1#$uH$#$puH$#$puH$p#HLH`HĘ[]A\A]A^A_AUIATIUHSHH8@6@ƨt4LA$uAIM11HHI+MG wIL$IT$(H|u_M SHھH訽AHL HLHHD$$H$oHLH_tH8[]A\A]hhATI1UHH1SHe-HHL[]A\s_AWIAVMAUIATIUHSHxH$@HD$H$Ƅ$0HDŽ$HH$8HT$HDŽ$ HDŽ$(HDŽ$0@THT$LLH@MLHLHd$uH$8#$uH$#Hx[]A\A]A^A_ AWIAVMAUIATIUHSHxH$@HD$H$Ƅ$0HDŽ$HH$8HT$HDŽ$ HDŽ$(HDŽ$0@ SHT$LLHIMLHLHd$uH$8#$uH$#Hx[]A\A]A^A_ AWIAVMAUIATIUHSHxH$@HD$H$Ƅ$0HDŽ$HH$8HT$HDŽ$ HDŽ$(HDŽ$0@RHT$LLHRMLHLHc$uH$8 #$uH$#Hx[]A\A]A^A_ ]HcUAWIAVMAUIATIUHSHxH$@HD$H$Ƅ$0HDŽ$HH$8HT$HDŽ$ HDŽ$(HDŽ$0@QHT$LLH0eMLHLHa$uH$8#$uH$#Hx[]A\A]A^A_HcAWIAVMAUIATIUHSHxH$@HD$H$Ƅ$0HDŽ$HH$8HT$HDŽ$ HDŽ$(HDŽ$0@ PHT$LLH8dMLHLHa$uH$8#$uH$#Hx[]A\A]A^A_HccHccAWH AVAUATUHSHH(H9Ht$D$LL$Ld$`L$w_DH* HxH*HHHH H*X^Yf.sL,HII9u L HE1赲HIu0LH(H[]A\A]A^A_OLL$GyOII9uH5#HC I9IMH9t* tH9} LH< LH蟰ID$Hk(OLT$L]H{(HL$HHHH$tZL9|EH5##LmHC I9IMH9t* tH9} LH貰 LHHC(H$HHKH{(HHH$tZL9|EH5#LmHC I9IMH9t* tH9} LH? LH袯HK(H4$H4HIIHtqD+HCHHkAD l$D+"HsH95 #HM5#HC H9t" tH9}LH貯 LHHt$LHWL#H(L[]A\A]A^A_AlHckH8HIIHHֹ LHHƿD$$8pH8H8HIIHHֹ LHHƿD$$oH8IHHHoAWIAVIAUMATUSHMgM_MW MO(H|$Ld$`L\$hLT$pLL$xLAHiHq HY(@@H9LD$0T$PHl$8Ht$@H\$HD$ HD$XHD$(tL9Hu%H $,HHH $uAMLI9tM9Lu"H $HHH $u AML$H $L KIH $Hc HGH+AH9H$H9~ AMULT$ M|$LHLLLT$iLL$PMLHHLL $.LLHH`LD$`Hd HXLIH$Ht$LH$HHIL$MN.H$MLHHHxD$EutD$AE }u|$u]L%Ip#H HA1I<$=I<$H1&I4$ AMH=l#Hvu0HT$MLHHHl#MLHH@Ht$Hvt8HT$MLHHyHl#MLHHD$H;l$t3H|$LH.+thEu H}(#Eu H#L9t/LHL*t2u H{(#u H#D$AE urH;l$t$HtEu H}(#Eu H#L9t"Htu H{(v#u Hh#H|$1O1L@Hĸ[]A\A]A^A_AWIAVMAUIATIUHSHxH$@HD$H$Ƅ$0HDŽ$HH$8HT$HDŽ$ HDŽ$(HDŽ$0@|GHT$LLHMLHLH$uH$8u#$uH$]#Hx[]A\A]A^A_ AWIAVMAUIATIUHSHxH$@HD$H$Ƅ$0HDŽ$HH$8HT$HDŽ$ HDŽ$(HDŽ$0@FHT$LLHZMLHLH$uH$8~#$uH$f#Hx[]A\A]A^A_HcSHHuH4ȹH9v [HHqSHHuH9v[SE11JIIJII9rHIH9s MIE1[ÐHHk#HtHÐU=#HATSubH= k#t H=h#rHg#L%g#H]#L)HHH9s DHH=#AH2#H9r#[A\fH=Hg#UHtH[j#HtH=/g#@Ð f.Hj#G(Hffff.HHHHHHHHSHH=%#1vHtSPL@Hs LljPP@0[SHHHtHHHHt!H{HtH7HHH7t0H[HOHXHA0H9uJLGAP0@fffff.SH~HH5#H9u HH[vuHh#H51H8USHHHH5#H"HHt3HxH5#H9Ht H#HCXHH[]HH=2#1HHtH5$#@,HH*xaH;HHH;uHkHU0H|h#H51H8C|f\Hg#H51H:TH HHH t1>HsH1V0-fDAUIATIUSHH-h#Hl$HHLD$H w#H1LLHD$H9uDH\$H=5#HHt^H|$1LHHEtMHH]HH[]A\A]HxH5R#H9tpuHf#H51H81HUHEHHHUuHMH1Q0ffffff.HHtHHfUSHHH~H5#H96HHH;#tXH;#tOH;#tFHH5#HHH#xoH;HHH;tTHtf#HH[]1HHHtK@,IfHe#H5H81HkHU0H HHH t1HsHV01He#H5?H:1mDHHw11HtHHHHtHe#HHHHHHHQ0fSHwH11HtHHHHtHCHHH[HHHQ0ffffff.ATUSHGHa#D HHu#'Dcu)Hd#HsHnxH H;u[H]A\Hd#HUHHHUu HMHQ01HH3tHxd#HHH`d#HfAVIH=#AUATUHSHD$ HHtGL`Ll$ IvLL: t$ Hu/HuLLHt$ HuHH[]A\A]A^HHHHt1HSH1R0f.HHOHHt HHHt HHHV1f.AWAVAUATUSHH(dH%(HD$1HH{HWHqHtD$-@|$Hk(HuHwHHIE1L4b#H{ HI0HHHLpHLHILL$LQHHǺ1L@HcI9HINE1I9}NJ|LOAHT$vHHT$H Eu 0HI|$u/HzLEH1ML3IML3HT$dH3%(LH([]A\A]A^A_H5$HtOH5HH5HnQH|$H5E1E1JH|$H5AE1&|$0HHE1&L{HAW0~HuH `#H5(E1H9]H|$H57E1E1H_#H5E1H8L_#H5;I:HHHHMzLE1|jHuLf_#H5I;HN_#H5E1H;*H-0_#H5xE1H}} L-_#H5I}aYHCHP0]8@>fDUH h#HHHHVS1HHR_#LD$H\$3HD$H9tGHxH5#H9uHPPHuH}HxbH<$HH<$H#HH[]Ht*HD$uHQ^#H51H8x1HD$V1f.UH #HHHHvS1HHr^#LD$H\$StGHD$H9t,HxH5"#H9u1H}Hp耟HH[]HtHD$1uH]#H5=H81HD$fUH #HHHHS1HH]#ID$ H$螾H$H9tYHxH5j#H9uYH=#)HHt+H$HxHL$ HuH跳t$ H<$u=HH[]HtXH$/uH\#H5]1H8HHHHu HsH _HF0H9uH1L1H1ېfff.UH #HHHHS1HH\#ID$ H$~H$H9tYHxH5J#H9uYH=# HHt+H$HxHL$ HuHt$ H<$u=HH[]HtXH$uH[#H5=1H8賿HHHHu HsH ?HF0H9uH1,1H1ېfff.UHH=չ#SHD$ 3HHtHT$ HuHx詥D$ u HH[]HHHHu HSHR01fDUHH=e#SHD$ HHtHT$ HuHxYD$ u HH[]HHHHu HSHR0肺1fDHHtHZ#HHHpZ#HfHHSHfDUH #HHHHVS1HHRZ#LD$H\$3t~HD$H9t3HxH5#H9u4HpH}tFHY#HH[]Ht7HD$u+HiY#H5H8蒽1HY#H1HD$fffff.HHCtHhY#HHHPY#HfHHtH8Y#HHH Y#HfHHӘtHY#HHHX#HfUH X#HHHHS1HHX#LD$H\$ӹt~HD$H9t3HxH5#H9u4HpH}puFH}X#HH[]eHt7HD$茺u+H X#H5H821H?X#H1HD$fffff.HH賗tHX#HHHW#HfHHsuHW#HHHW#HfSH~HH5#H9uH{#t0HW#H[赹uH2W#H5ۺH8[1[H`W#H[fHHӖtHHW#HHH0W#HfHH蓖HHHHcHHϺUH #HHHHS1HHV#ID$ H$ηH$H9u[HH$H=#WHHt+H$HxHL$ HuHt$ H<$u=HH[]HxH5?#H9t]uHU#H51H8HHHHu HsH HF0H9uH1z1H1ff.ATH #1UHHHHSHPHU#LL$8LD$@D$LH\$@H\$8蟶HD$8H9\HHD$8Hp HH|$@H9uGH=# HHt'HxHL$LHuH-t$LH|$8uxHPH[]A\x_H/uHT#H5B1H:踸HxH5ô#H9\ݶu\HZT#H5 1H8聸1H+HHH+uLKL IA0L9uH1VH1JHD$8ff.ATH '#1UHHHHuSHPH@T#LL$8LD$@D$LH\$@H\$8HD$8H9HHD$8Hp HH|$@H9tH.H=#[HHt'HxHL$LHuHTt$LH|$8uGHPH[]A\HxH5E#H9n_ujHR#H51H81H+HHH+uLKLIA0L9u3H1xHR#H5h1H:趶mHD$8H1WATIUSHD$ 舿HHtGH=#THHt'HxHL$ HUIt$t$ H uHH[]A\1HHHHuHSH1R0UH (#HHHH&S1HH"R#ID$ H$H$H9tYHxH5ʱ#H9uYH=#艼HHt+H$HxHL$ HuH7t$ H<$:u=HH[]gHtXH$菳uH Q#H51H83HHHHu HsH HF0H9uH11H1ېfff.UH #HHHHS1HHQ#ID$ H$ޱH$H9tYHxH5#H9uYH=#iHHt+H$HxHL$ HuH致t$ H<$u=HH[]GHtXH$ouHO#H51H8HHHHu HsH HF0H9uH11H1ېfff.UH #HHHHS1HHO#ID$ H$辰H$H9tYHxH5#H9uYH=ޭ#IHHt+H$HxHL$ HuHt$ H<$u=HH[]'HtXH$OuHN#H5}1H8HHHHu HsH HF0H9uH1l1H1ېfff.ATIUSHD$ 蘻HHtGH=#dHHt'HxHL$ HUIt$腮t$ HuHH[]A\1HHHHuHSH1R0UH h#HHHH6S1HH2N#ID$ H$H$H9tYHxH5ڭ#H9uYH=.#虸HHt+H$HxHL$ HuHwt$ H<$Ju=HH[]wHtXH$蟯uHM#H5͸1H8CHHHHu HsH ϿHF0H9uH1輿1H1ېfff.UH X#HHHHS1HHM#ID$ H$H$H9t]HxH5#H9H= #uHHt+H$HxHL$ HuHt$ H<$&uHH[]SHt^H$HHHHuIHsH ξHF0H9u9H1軾LfiHK#H5t1H81H1UH H#HHHHS1HHK#ID$ H$άH$H9t]HxH5#H9H=#UHHt+H$HxHL$ HuHSt$ H<$uHH[]3Ht^H$HHHHuIHsH HF0H9u9H1蛽,fiHJ#H5T1H8ʮ1H1ATIUSHD$ 訷HHtGH= #tHHt'HxHL$ HUIt$%t$ H)uHH[]A\1HHHHuHSH1R0USHHHGHHh 覊t HS8HlHH[]ff.SHHtHߺH[Q[ffffff.SH跶HtHߺH[![ffffff.SH臶HtHߺH[[ffffff.AUATIUHSHXHD$@D$L:HHTHT$@H5P1H6H|$@H$HGHT$0HD$0HD$HD$HD$HD$ HT$(詪HIH= #xHHtPILHHM9HKHELD$LHxHt$It$H=t$LHu#HXH[]A\A]úHLHH]HHH]u2LUL IB0L9u?H1莺ߨH@61H G#H51H9趫yH1fkff.UHSHH"HuEH1MHHt$HHHHHHu HKHQ0HH[]HF#H5A1H8DAWAVAUATUHSHxdH%(HD$h1H|$HD$ D$,HHHL$ HT$H51H襧H|$HGzHt$HIHl$H~ 8L$$1SPL|$0H4$L`zH|$ HRHT$H1HHHHH>/E1HT$P1HHHHH?0E1E1H|$HSHL$,LHdHH1HHHHHqHt$ud1HIMMu[Mut0Ht H#HT$hdH3%(LHx[]A\A]A^A_HuMMIMMMuMULAR0M.IMM.yM^LAS0iHw H5)HItHWHIHx H|$HH|$ H5ѧHItH!HINLH LL$PH|$ H5٨蛧HItHHILP LT$XL&^GLC#H51E1I; xI4$HHI4$lMD$LAP0[H7HIL` Ld$HH HItuHP E1HT$PH}HH$H<$HL趥H$*_D$CD$DH<$٢Ht$E11E1H B#H5?E1H9E1D$-umL=B#H5rI?E1צDHkB#H5 E1E1H;趦LuB#H5E1E1I8蘦l~E1nE1qfAWAVAUATIUSH_HH賊HIH诂诡HHLӁL]LӁH=HQHE財IM}I}1蔥HHTE1H=.#E1LHH1蛡IL8Mt L#HtHuHHHuZHtH+HHH+2MtI$HHI$HL[]A\A]A^A_LIE܁L_HI1HLE1HHHHL$詤HHt}L;|$C>0HcHt]JDII|$ 茤IH=qXHIt'H=110HHE1E1E11E1E1E11E1'E1MT$LAR0LKHAQ0LEHAP01E1WSH_H1u H5H[鴣fff.ATUHSHG tjE1H H #tMH `?#H5fAH9t[]DA\HsH萟Ht?Hcx[uD cH H;uH>#H5AH:HuH>#H5AH;AuSBHHHFH;#u*H^H‹7;38tJH>#HH[ tEHT$T$u LSA;AAE8uHm>#1fyH>#fffff.U1SHH0Ht1pPH{]HHt'H=âH1~HH"#HH[]ӝfSH#HH9FtHƃt[HV2H{1uH=#H5H;胡[fDSH@#HH9FtHƃt[HV2H{y1uHZ=#H5H;#[fDATH #yUSHH0W,H$dH%(H$(1HPRxS(Ld$ H #yL#Rx`x\HcS4H5/#{8DKPLC1HK HHs<$H=Ld$Hl$H$(dH3%(u&H0[]A\Hg<#H5HH801'ffffff.AWAVAUATIUSHHoHtHH[]A\A]A^A_H$H$H$IIƄ$L$HDŽ$HDŽ$HDŽ$HDŽ$H$L$D$pHD$xHDŽ$HDŽ$HDŽ$H$HDŽ$ D$@HD$HHD$PHD$XHD$`HD$hDŽ$HiI\$HH$Lt$LiyHIXyHHIt$ HL$HLL(H$Ht$@HD$MMHHLbH4$LHsKHHCzHXLIId Hd MH|$ LLHHL\$HD$$HT$MLHH贬LHH<$I}yL$HޅHLDIIEŅHL(HtHIl$oL$HHLL'H$Ht$pHD$H<$u$H<$1uH<$yHcHi/L8#H5I:ztӘMRfSL58#H5}I>轜01fff.UHSHHHt+H3Ht#H賛tH Ct HCH[]H8#H5:HH81 1ڐAVL8#LL 8#LuAUL#L-#L6#ATL %#USH7#H%#H!8#Hs`HHnHN(H5H=#H=7#H-ڻ#H #HW`HB@Hܻ#HHݻ#&H5bHHH#L%Q7#H=ڕ#L%Ӗ#L%l#L%#L%#聖H=J#mH=v#YH=˜#EH=HH|H=^#H5H试[ H=#H5H葕= LmIMLm H=}(HIH5mHMHI H Ҕ#HH5KH1bHk HHHHI H5'LHH#9 IEHHIE I>HHI>H=sHHLݚH HH5H1HH#H=UHHtL#H5PHE1I9LMIMLMH5H HHH=J5#H k#HjH5nI1HH#LIMLH]HHH]nH=#rHIHH#H5#HH#X"H#H5LH#2Hӷ#H5~LHL5!4#H=1I60HH#HH5~HLʒ 踗HH#zHI#H5?#1[IMAH1L螖HH IMHHHIMHHL#HH5U#HcH HHD=tcG=t4=@>H %#H^#H52#1苔I+H<#H5#1iI Hr2#HH5(#1DIH-#HV#H-G#H;{t{H5#1HHH{1HJHHCLMHIMLMHH3L֐H H1#BL1#H5n#1IHvH=ؑ#1)HH?#KHH5(HLc-H=OHH #H1#H5 LH%H=^#1诓HHմ#HHH5Ԗ@0@,HH@ H@?BLHX8@4@(KH@ @P裏mH=ܐ#1-HH[#OLHH5_HX8@,HH@ H@?BLLX0H#@(H@ @P$H;t1H{-HHH3HLHHƳ#H3HMH-#L5̳#1IH|uHIzHItHL蔎^HH@uHH5}L,6nH5mHL []LA\A]A^11E1H=Ӳ#Ht"L7H#IML7uLGAP0HtH;HHH;u LKHAQ0HtH]HHH]u LUHAR0H=#Ht"H/H#HHH/uL_AS0H=?#Ht!L/H,#IML/uHOQ0H="#Ht!HH#HHHuHGP0H=#Ht"H7H#HHH7uLwAV0H=ױ#Ht"LHı#IMLuLOAQ0H=#Ht"HH#HHHuLWAR0MdI<$HHI<$u Il$LU0E1@HcSLIxGH1L]IML]u LmHAU01IULR0HH11LmHAU0LcHAT$0\E1LUHAR0LUHAR0HSH1E1InLU0 IuLV0HHHQ011E1MtIMHHIMu IULR0MHtcH=#HHתHHtQH#H9tE11HHHIHHHuHsH HF0H9uHv[]LA\IH@fffff.UHHHH=#SHD$ =HHt"HxHT$ HuSt$ H'u HH[]HHHHu%HKHߜHA0H9u H1̜H1fffff.HHHRfHHHHt$藮1tHD$HDH(HHHt$g1t1H|$Hau$H)#HH|$HHHHtH(H)#HLGH5IP0H9uHD$HD$HD$HD$fU1SHHH5rH8HL$HT$ D$,`HT$ Ht$Hٿ蕭AHT$Ht$HٿvH='#蒓HHHT$Ht$HxHKLD$,HHBH|$LIMLtMH|$HHHHtt$,HuHH8H[]HwH ՚HF0H9ÚHGLH@0L9褚H}HHH}uULEHI@0H9Hq1H|$HHHHuHOHNHA0H9t1R1KH|$HHHHuHwV0H|$LIMLLOAQ0 DfHfDfffff.ATIUHSH D$HHHt$1HL藫Ht$1HH}H=.#虑HHHT$Ht$HxHKLD$HHIH|$LIMLt0H|$L'IML't;t$HutH H[]A\L_LژIC0L9ȘHGHH@0H9詘H|$HHHHHl$Hl$1H}HHH}uHMH1Q0jH|$HHHHuH_S0H|$H7HHH77LGAP0*fff.HWDR0YSHHHH Ht$ө1t!H|$HH|$HHHHtH [H_HD$S0HD$U1SHHH5"H8HL$HT$ D$,蜅HT$ Ht$HٿEHT$Ht$Hٿ&H=ׂ#BHHHT$Ht$HxHKLD$,HHrH|$LIMLt2H|$HHHHt=t$,H辖H8H[]HGLH@0L9oHwH bHF0H9P1H|$HHHHuHOH+HA0H91|H|$HHHHuHwV0H|$LIMLILOAQ0tHA0H9ul0t11H|$H7HHH7uLGAP0H<$LIMLULWAR0HfD;ff.f1UH i#HHHH%gS1H(H"#LL$LD$H\$a,HL$H9mHHHD$Ht$HHHL$HT$H)H=^#EkHHH$Ht$HxHHhH|$LIMLH<$HHHHt1HH([]HyH5`#H9L)bt1HL$9HOHxrHA0H9ujrHu"H5&k1H8c1L_AS0jH|$H7HHH7uHoU0H<$LIMLKLOAQ0>H|$HHHHuHO1Q0SHHH5ue1H HL$HT$_ HT$Ht$Hٿ螃HT$HHٿ聃H=2]#iHHH$Ht$HxHHWgH|$LIMLtH<$HHHHt(HH [HGHpH@0H9pLGH5pI@0H9u|pH|$HHHHuHOHpHA0H9ulp11H|$H7HHH7uLGAP0H<$LIMLULWAR0HfD;ff.f1UH f#HHHHcS1H(H"LL$LD$H\$n^,HL$H9+jHHHD$Ht$H踁HL$HT$H虁H=J[#gHHH$Ht$HxHHoeH|$LIMLH<$HHHHt1HH([]HyH5\#H9L^t1HL$9HOHnHA0H9unH"H5g1H8 `1L_AS0jH|$H7HHH7uHoU0H<$LIMLKLOAQ0>H|$HHHHuHO1Q0UHH1SHH(Ht$0tJHt$SPH|$H6H|$HHHHt*HxJH|$H@tH|$HZ~#H(H[]H_H mHS0H9uHD$mHD$Z1HD$HD$fff.UHH1SHH(Ht$ptJHt$SPH|$HV6H|$HHHHt*HxJH|$HsH|$H}#H(H[]H_H lHS0H9uHD$lHD$&Z1HD$HD$fff.SHHHH Ht$~1t.H|$HsHi;H|$HHHHtHYH [HwH\lHV0H9uHD$IlHD$HD$HD$@UHHHSHHD$ ~t_H=W#ff1H|$LIMLuLOAQ0H|$LIMLuL_AS0H|$HHHHfHWR0Zf"ff.UH hW#HHHHSSHXH"HD$LL$8LD$@D$LH$1H\$NHL$H9XzZHHHD$Ht$0HrHL$HT$@Ht$(qHL$HT$8Ht$ q!H=vK#WHHHl$HL$ HxHT$(Ht$0LL$LLEHHHH|$0HHHH6H|$(LIMLtQH|$ LIMLuHGH_H@0H9 _t$LH|$_HHX[]LWL ^IB0L9^HyH5,L#H9FNH"H5pW1H:OH|$0HHHH H|$(H7HHH71eH;HHH;uHkH ;^HE0H9H1$^/HL$ HwV0H|$0ffH|$0LIMLuLOAQ0H|$(LIMLuL_AS0H|$ HHHHHWR0H1fDHo1U0f{H_S0@ff.UH xR#SHHHHPHXH-"HD$0LL$8LD$@HD$D$LH$1Hl$0KHT$@Ht$(HٿnHT$8Ht$ HٿnHT$0H9H=qH#THHHL$HHT$ Ht$(HKHxLD$LHHH|$(LIMLH|$ HHHHt$LHB\HXH[]Ht$HٿnNH|$(H7HHH7uHoU0H|$ LIMLuLOAQ0Hl$HT$ Ht$(HxLL$LLCHHH_H|$H7HHH7LOLm[IA0L95[[HwH K[HF0H9%9[1fHGL [H@0L9[H}HHH}uLEHZI@0H9HZ1H|$(HHHHuH_H ZHC0H9t1H|$(LIMLuL_AS0H|$ HHHHuHWR0H|$HAHHHH.H_S0"f.ff.fHfDRff.AUIATIUHSH(H$D$(THHHt$1HLk#Ht$1HLkH;-"H=DE#QHHH $HHT$Ht$HKHxLD$HHH|$LIMLH|$LIMLuLoL%XIE0L9Xt$HXH(H[]A\A]1HHHj4H|$HHHHH|$H7HHH7uLGH-xXI@0H9fXH,$HT$Ht$HxLL$LCHHH[H<$HHHHHwH XHF0H9XLWL WIB0L9,WH|$HHHHHl$H}HHH}HEHWH@0H9H1WHl$D7H|$LIMLuLWAR0H|$LIMLu LgAT$0H<$HNL/IML/;HGP0/@1HWR0@H_S0@4fUff.H1@fU1SHHH52JH8HL$HT$ D$,DHT$ Ht$HٿUhHT$Ht$Hٿ6hH=A#RNHHHT$Ht$HxHKLD$,HHRH|$LIMLt2H|$HHHHt=t$,HUH8H[]HGLUH@0L9UHwH rUHF0H9`U1H|$HHHHuHOH;UHA0H9)U1|H|$HHHHuHwV0H|$LIMLILOAQ0U1SHHH5BFH8HL$HT$ D$,@3HT$ Ht$HٿedHT$Ht$HٿFdH==#bJHHHT$Ht$HxHKLD$,HHLH|$LIMLt2H|$HHHHt=t$,HQH8H[]HGLQH@0L9QHwH QHF0H9pQH|$HHHHu!HOHOQHA0H9=Q11|H|$HHHHuHwV0H|$LIMLILOAQ0FHL$H9JHHHD$"Ht$H0bHL$HT$ Ht$bH=;#+HHHHL$HT$HxHt$LD$,HHHJH|$LIML#H|$HHHHtt$,H|$OulHH8[]HOHcOHA0H9QOHyH5<#H9 >HL$H|$HHHHt:1H;HHH;uHkH5NHE0H9~H1N^HO1Q0PH|$H7HHH7uHoU0H|$LIMLLOAQ0fDL_AS0H1Ht"H5%G1H8?fffff.U1SHHH5AH8HL$HT$ D$,L<HT$ Ht$Hٿ_HT$Ht$Hٿ_H=9#EHHHT$Ht$HxHKLD$,HHMH|$LIMLt2H|$HHHHt=t$,HnMH8H[]HGL1MH@0L9MHwH MHF0H9M1H|$HHHHuHOHLHA0H9L1|H|$HHHHuHwV0H|$LIMLILOAQ0H8H[]HGLq>H@0L9_>HwH R>HF0H9@>1H|$HHHHuHOH>HA0H9 >1|H|$HHHHuHwV0H|$LIMLILOAQ0u}H8H[]HGLH@0L9HwH HF0H9H|$HHHHuKHOHHA0H91H}HHH}uLEHI@0H9u]H1RH|$HHHHuHwV0H|$LIMLLOAQ0f.H1Dff.ATIUHSH D$5HHHt$1HL,/Ht$1HH,H=^#HHHT$Ht$HxHKLD$HH蹓H|$LIMLt0H|$L'IML't;t$HEuiH H[]A\L_L IC0L9HGHH@0H9H|$HHHHHl$H}HHH}uqH]H HC0H9H1_Hl$UH|$HHHHuH_S0H|$H7HHH7"LGAP01HWDR0IH1Аff.UHHHSHHD$ *t_H=#HHH4$HL$ HxHUH'H<$HHHHtt$ Hu)HH[]1LGH5ZI@0H9u@LH;HHH;uHkH1U0H<$HHHHuHWR0랐fff.UHHHSHHD$ )t_H=# HHH4$HL$ HxHUH& H<$HHHHtt$ Hu)HH[]1LGH5jI@0H9u@\H;HHH;uHkH1U0H<$HHHHuHWR0랐fff.UHHHSHHD$ (t_H=#HHH4$HL$ HxHUH膥H<$HHHHtt$ Hu)HH[]1LGH5zI@0H9u@lH;HHH;uHkH1U0H<$HHHHuHWR0랐fff.UHHHSHHD$ (t_H=#,HHH4$HL$ HxHUHH<$HHHHtt$ Hu)HH[]1LGH5I@0H9u@|H;HHH;uHkH1U0H<$HHHHuHWR0랐fff.UHHHSHHD$ 't_H=#< HHH4$HL$ HxHUHH<$HHHHtt$ Hu)HH[]1LGH5I@0H9u@H;HHH;uHkH1U0H<$HHHHuHWR0랐fff.UHHHSHHD$ ,&t_H="L HHH4$HL$ HxHUHfH<$HHHHtt$ Hu)HH[]1LGH5I@0H9u@H;HHH;uHkH1U0H<$HHHHuHWR0랐fff.UHHHSHHD$ <%t_H="\ HHH4$HL$ HxHUHH<$HHHHtt$ Hu)HH[]1LGH5I@0H9u@H;HHH;uHkH1U0H<$HHHHuHWR0랐fff.UHHHSHHD$ L$t_H="l HHH4$HL$ HxHUHH<$HHHHtt$ Hu5HH[]1LGH5I@0H9uH;HHH;uHkH1U0H<$HHHHuHWR0DUHHHSHHD$ \#t_H="| HHH4$HL$ HxHUHV4H<$HHHHtt$ Hu)HH[]1LGH5I@0H9u@H;HHH;uHkH1U0H<$HHHHuHWR0랐fff.UHHHSHHD$ l"t_H=!"HHH4$HL$ HxHUH9H<$HHHHtt$ H'u)HH[]1LGH5I@0H9u@H;HHH;uHkH1U0H<$HHHHuHWR0랐fff.UHHHSHHD$ |!t_H=1"HHH4$HL$ HxHUH&H<$HHHHtt$ H7u)HH[]1LGH5I@0H9u@H;HHH;uHkH1U0H<$HHHHuHWR0랐fff.UHHHSHHD$ t_H=A"HHH4$HL$ HxHUHVH<$HHHHtt$ HGu)HH[]1LGH5 I@0H9u@ H;HHH;uHkH1U0H<$HHHHuHWR0랐fff.ATIHH5/1US1HHH$tqH$H$H{H-;"H9aHQH{Ht:11HHH HLnHH HH[]A\éu@H5="H9IL HLtoHHL$ IT$HHD$ HHtt$ L tH;HHH;uoLCH-l I@0H9H1U >L i"H HI15HHt'H76LHIMLH1H{G Ict$8IL$H)H9K(L uH="HHHx1 .@LcH"H5 1H;IT$1PL[HAS0AH="D$ ~HH HxHL$ IT$1͑t$ L1 HHHHHSH1R0HL3HH1fDUHSH>H1Ht"HuH=SHHHHHtH[]HKHD$HQ0HD$fUHoSHHHkEu@HO>H1Ht$HHHHHHu HKHQ0HH[]H?EuH#Eu+H= HHϖ"H5 1H8H=xHtSHFHHtYH~HHHHuHS$HR0$f.+ tHfW[z$H$t1H[ÐHG1DH"H=#HfH"G,Hffff.H;=#SHtQH@HtrHHHHucHWR0H{HHtLIMLuLOAQ0H{L@H[AH@H#HtHHHHuHwV0H{HHuffff.HH="tVH;5"H"tH H8tHHHI>kHpLLLL IIML LSHAR0M{HHjHIHLt$\Hl$Hl$ HXLHH`lHt$LHLwMHLHH詯t$\L CMT$MHHLLL$hH,L,t$\LL $t$LC.L\$IM\$ HhL[]A\A]A^A_LHItޅwt$HxzHf.f(uz $pH $f( $f(fTfVf.AAE!AAl$ $Ff(5H0#HH1H)#LuHIMLuu HEHP0H1LkH{ #HIHIHHHIHLLL H3IHHH3u LCHAP0Mz_Hx1UJLI:H{"H5 E1H;H*L*I$HHI$tyE1Hq*I<$HHI<$u ML$LAQ0E1IVLR0H L#IML#uL{HE1AW0Il$LE1U0oDH\$Hl$HLd$Ll$AH8HzL-"HL9u/HH]H\$Hl$ Ld$(Ll$0H8fLHL$HL$uHCtHHLoHHEEt#H dz"HPH51H9G1vH9z"1HHU`fHl$HH"Ld$H\$HLl$Lt$IL|$HH9D$L]HHHHH@0H@H@ H@(IHH@H@0LsH@8HD$L|$LHHD$SHT$LLL货t$LAHt$LRHH\$XHl$`Ld$hLl$pLt$xL$HĈ10HIHpHH\$MuL|$LH@@0Hp@H@ HH@(H@0H@8RLHLLD$LAuRHt$LuL=I}HHI}u7MEH-HI@0H9u(LE14LLD$LE1LE1ffff.H\$Hl$HLd$Ll$HxH-vx"HLL$8HLD$@H "H1HD$@Hl$83Ld$8I95L%"M)I;D$XHl$@Ld$8H%H}L-'"L9NL>H}Hu4tmLHH'H\$XHl$`Ld$hLl$pHxfDHFHHGHLHHHH@HgH5v"H9 LHLHHHRfI|$H5"H9oHl$@HHD$LmHHtHmPHL$LH{H1oNL9D$LuH9]u HEHoHHH[HT$LHuHxJ2t$LL5HHHH1LMH-u"H511IQH}t HItHD$8H=Yu"HH7HHItH'IuHHHIutRHgHLHHHkoDu;Ht"H51H8@MELAP0HKH1Q0"Ld$8>fH\$Hl$HLt$Ld$Ll$L|$HID$|^H_"HjH;BX`I~H"HT$H9nIMML;5t"ItzHL{L'"IvD$HH4$"H4$HT$|LD$|HHHHIHHI=vHcIL.H=LcI8D@ǃRH$H$L$L$L$L$HĸÃAAzlAA]AAND HHD$@I~L ~"L9H5n"1I~HT$H=D"L|IMIHnr"I9L9uIEM}Mt$Lr LD$f HT$|LLD$R{I}HHI}SM$IMM$t1=tSTH5=AJc H,13IT$L HR0L9L$$릃|$t[t$|H|$tZE1H5q"H9u`DUAL\$H="LAK,LHI|$uDeAw)L%wq"I$uI~H5)q"H9i{\H5"LJH5LLHI)HT$H=f"HIuIHHIuMLkLH5LD$xzHIHT$H="H2I?IHHI?pML軸HIH="#HI\HT$0HH$JMOH $IVI}LD$xIGLL $ZH$IE MIMMu INH5{HA0H9=LfL^|$xL=Do"H5I?MuIMMuu MELAP0M,$IMM,$I\$LE1S0|IML%Vo"I$_Hn"IHIpH|$X1MUH=IR0H9kL$$DeALqD$ Lt$ L$(Ll$(Lt$`D$`Ll$hf.t~fWf.L$hMGFHIL|$H="HAO,LIIEHHIErIULR0c$Lҋ$z$H$(cMGLAP0IMLQ0MIMMu MVLAR0LY3IHHIu InLU0~L$Lҋ$fDSHH5 "HtH;FXuHߺ["HHu1[fDAVLwAULATUSH D$H-"HH;EXH=R"IHHHHHL`HT$H@@0LH@ H@(LH@0H@8HH@(LvHLs HC HH3HHHH3LCH=I@0H9LLKHA@HLH?HL1H)HI| 2HIHk"LH"IMHHHIMI<$HHI<$HM\HHHIHHy"LUIIMLUu L]HAS0LHN"H+IHHH+HCHP0IHHIM~MuLL1MtI}HHI}MtM,$IMM,$H []A\A]A^fDIHHIOMM11LLHwH3HHH3dLCHD$HAP0HD$JHH,"LuIIMLuLMHAQ0M6HIiE1LHC H2L+HIML+u/HCH5H@0H9L LcHA$@HcE1I1LHi"H5H:-1INLQ0HIH=w":HHHhHL`HT$H@@0LH@ H@(LH@0H@8Hh@$tHLLs H"h"H5 H8s1LHLIMLu L[HAS0+11HfBILLI1E1MuHD$LAV0HD$=ML$HD$LAQ0HD$IMM>tNt$H|$vL3IML31\IGL-H@0L9unLINHHA0H9LjHEIL5lb"IIHHIt6LL=Jb"ILL5HsH1V0IoLLU0MIMMu MWLAR0MIMMMfL1AT$0mL@ff.AWAVAUATUHHHSHHb"LL$HLD$PHL$XHT$`HD$hLT$@LL$ LD$LL$pHL$HT$LD$xH ,"HH$1H\$xH\$pH\$hH\$`H\$XH\$PH\$HH\$@LT$(YH|$xH9:HHLmL;Ld$pI9oIt$,H5"I9pL;%"jL;%"gL;%"dL;%"aL;%"^L;%"NL;%"NLvH5W"LLm[H5?"L?H5+"L#t~H5"L tfH5 "LH5"LܾH5"LžH-_"H5\"H}1L:H|$hH9HHpH}K:H_"H5UH8UiL8:H|$hH9X%HH L9tH|$`H9YHHL9H|$XH9OHHH|$PEPH9rHHAAN$0M9L9Lt$@I9nM~ALqHI6E1E1LL-H="H;"Hy"tH H:H;BuBIA M9AL}DL85Ll$HI9I}L诿HIE11fDHLmH="H;"H"tH H:H;BuB"HA I9A L}DL&8W1HĈ[]A\A]A^A_H|$`H9t#þHHH}e7H|$XH9t薾HHEPH|$PH9tCpHHAALmN M9ZLmL7PLt$@I9t;IvLLm;HI1L 7|Ll$HI9M]AJLL}HIBE1Ld$pI9I|$H5^"LmI91*  Lm|LmnLm`Ht$8HHt$8xH{Z"H5H;̾Ht$8躻HHt$8ue覻HuH :Z"H5;H9苾LHA1EANL%8Z"H5W"I<$PdLHeQCHD$8&HHt$8$H}4ZHY"H5AH;Ht$8ߺHHt$8HeY"H5H:趽L-Y"H5I}藽L5Y"H5I>yH-Y"H5sH}Znf.ATUHSHH"Ht{H;BXuuRPHuH|$͔HIHHl$׼HH@ @H{0LHH|$"HH[]A\1HtPPHuH|$LHIxBHHl$ZHHt@ t/@H{0t!LH觺H|$|"51H{HH{Hffff.AVH "AUATUSHHHHqH`H->X"HD$HLL$PLD$@D$\H$1Hl$PHl$HLd$HI9wL5x"MI;FXMFLt$HLD$InHl$I~ H|$ Iv(H|$PHt$(IN0L9HL$0IV8HT$8HCH-"MH9Ld$@HII|$H9DI$YHHwLPHMt$HL$HsHxLD$\H@@0LH@ H@(H@0H@8LP@"LL IML I4$HHI4$u0M\$H=2IC0H9*LMl$LA@t$\H|$H jH`H[]A\A]A^H5"HqHC@H="LHHILt$HLd$@I|$H9uI$@H5P"uID$H=."LLcHIH="ӵHHL@HMt$HL$IuHxH@L@@LD$\L@0H@ H@(H@0H@8JIUHHIUxIMLQ0iL5T"HPH51I>贵IUHHIU1L-T"HPH511I}ydHIHD$HtL\$It$ LH|$PH9u(HCLt$HH-"H9M(HIg_pH|$;/uL%`T"H51I<$&I|$H5-"H9jGucHS"H5u1H;LeIMLeHEL5nH@0L9H1WZLt$H8Ld$HImHHImu MMLAQ0M$IMM$I\$L1S0LfDIEL1P0H1ff.AVAUIATUSH0Dg,1~HHOH=b"tHrHI͕PMB I@zZIII*ML)H@H HI͕PMB HH@zZIII*IH)Iaw̫LIIIIiI)Ll$5DIBzՔLIIIIiрI)Ll$DIaw̫HIIIMiL)f.Iaw̫HIIIIiH)HHIBzՔIIIIiۀH)fDI$ LIIHvHI$II)Ll$NfDHI$ IvHIII$ML);HI$ IvHIII$ML)HH3"[3/#HIHII%ML)HHA|@HIKY8m4III Ii'H)HMHu@IIIHƤ~III)Ll$BfIWx/e9LIIHo#I3II)Ll$fDMHS;\IIIH]xEcIII)Ll$fHIu@IƤ~HHIIIML)HfIIu@ILIIHƤ~IIH)|@HHWx/e9Io#HII3ML)KIWx/e9HIo#III3ML)HCHIS;\I]xEcHHIIIML)HfIIS;\I]xEcILIIIML)@IЄK8LIIHrN I)II)Ll$FfDI4ׂCLIIIIi@BI)Ll$DI3"[3/#LIIHI%II)Ll$fDHIЄK8IrN III)ML)IЄK8HIrN III)ML)HHI4ׂCIIIIi@BH)HkI4ׂCHIIIMi@BL):f.I3"[3/#HHIII%IH)MIJIIGwIId H,IILIIIML)t{MIAD L)tXJ ֺH9LHYMs@LHYMֺH9s+H3HI4ֲH9sHHIHH9rDUH{H<tjIKY8m4LIII Ii'I)Ll$D1fMHS㥛 IIIIIiI)Ll$IIS㥛 ILIIIMiL)HHIS㥛 HHIIIMiL)S1E1H#NJE1I9AII)Ll$I#NJE1HL9AML)'H#NJE1H9AIH)fff.AWAVIAUATMUSLHxM9H|$0Ht$XHT$(MiI?JJHD$8HT$H$`HL$(I?H|$`H|$PHHL$I#NJ1LHt$H|$(LD$IHM)HHHHD$H&HL$HLLHH\$(L\$(O/LD$JTL$`N4O,HT$ LL$@LLt$L5Ll$Iv8uIHt$8H|$@LL5Ht$I LL$L$hLL$ILL$`H#NJI9Ht$ LH&IHHI?LH!HHL)HLHHHHHHHHHLHHH!H)HI9H$hH$`*LLL$1HeHI4HH)II9HLHdHIHIHLH?IH)I!HLIHIHMLHHHHK4(MHI)HLHH!H)I9AEMgH)Iv8uHL)LI9IrLHdHIaIXHD$0HNIHl$Hl$H|$H9WIH#NJIII9L9#H|$XLuGHT$(HH<tAL$`L9d$(ukH;l$Pu1HxD[]A\A]A^A_HL$HHt$(LH|$XE1H"Ht$IIL$NMHH>H|$("E1qI|$EoHt$`HHHt$PYH|$(Ax"NIxA oHHD$()Ho1"H HA\1H;dH;H:1NH3 @LHl$H_Cy 5H\$HLd$HLl$Lt$L|$HHHTHDUI)LnAHM)O,LDHI IwTI,IJI"LIKY8m4III Mi'M)MIIMICxqZ| ILIIIMiM)MafINI I fILI TIII!MM)MMHuyMLHH\$Hl$Ld$Ll$Lt$L|$KIME1fDLIBzՔIIIMi񀖘M)Mf.Mt$L=I L^IlIrf*I9I A'L1IHi'ILI)MI\@ID$HLMc OAMIIGwIId ILIIIMM)MfILIIIOMM)MMtL HHLIH]fDMI(\(ILIIIOwaH=ͩ""[H'"H ӟH{A71H;H;H1H3 [sH&"H HțA;1H;詅H;H1蓅H3 &aHc HXLIG$HHWHGGKGG G(G,fDHfff.HGff.HGff.G$fff.G(fff.HVHc H9w H71ÐHc H9w Hw1@Hc HH9w Hw1Ãw w$1ffffff.w w1fff.w w1fff.w w(1ÐAUIATAUHSH*tLLH&IHHLHHHu[]LA\A]HHHHHHHHtrIHIH)IH"HIMIL)OI"LLHL)I"LHH9IHIH)IH(HIMIL)I(Lr{LHL)I(LHH9f.II H)IH HIMI L)rnI LsIMu9H9v4fI|II"HLsHHtȐH)I(HLsHHuH9wH)IIIDAWHAHcAVAUIATUSHLHH,HuHMIt IMLL5 %HY.DLHЅMIII1I!I!MIIH)IH"HILHL) I"LsHHHH)} H"Hg HV H9M HHIIH)sIH"HLHIIH) H"HsILHL)I"LHH9HMIHL#LHLT$MLd$H9HHL)L9LHLH)H9MIM)M9sIHIH|$H|$IIIH)II"IILHM)I"MsHHHI)aH"IKHL9LIIIH)H"HIMIL)II"LILHL)FI"I0HL9L\$MHL#IIHL9vFM!HM8LLHLd$MLT$H)LT$MH9Ld$yH)qHD$H\$IH\$LL$HD$HD$L9L$H|$Hd$LL$@LL>H9AH)9H9H)IIIH)II(IILHM)I(MsHHHI)H(IHvL9mLIIIH)H(HILHL)I(LsHIIH)II(IMFI)GfII H)IH HILH L)NMI IHurL9vmLIII H)IH HILMH L)HI IHHI)IIBI)HxI)I)H(IIIII)HpI)UHHHpHuI)%I)H)HHHHH=HI)MH(ATUHSHHEI1MtLHHLЉ"[]A\fffff.ATUHSHHDI1MtLHHsL"[]A\AUIATAUHSHHt,tLLH#IHHLHH[]LA\A]HHHHHHHHtrIHIH)'H"HsIMIL)/I"LsILHL)$I"LHH9@IHIH)H(HsIMIL)I(LsILHL)I(LHuH9wH)II H)r\H HsILH L)rRI LFH=DH)@IRIIHsHII1HHG-GHGHG WHG(HOGAA}t/HcIT <><<<=y<^@mC CEeA>A<A=}1A^qA-PA+FA <A0ELEHCDQu~A,A.AetPAEtJAFtDAft>AGt8Agt2A%t,ANAn1EH[]A\A]DcI]H\$EeA0-FHt$I L$HHA$"Ll$Ee0MeLd$AuLmADuyFHt$H LGHCE"Ll$EeH{ ?r<EIA AGDSLl$FLHLKL@LC HHHK(,L\$E#CzEEIDCLl$CEe&H]H]L]IHSHC L[(Ll$EeHT$*Lj@kLl$DbIDcLl$EeIDcLl$EesG1p>@wvCAE@8wO@8rJAIHٸ9~&AuH~@?w%@qI1HDLl$C1lfffff.ҹ҃UHHHSHHHHu(G"Ht HHH[]EHHHuHr HF"1@ATIԺUHSHHD$H(HL$w|$HC(uHk H[]A\H;k ~H%3HHCHC1HCA $ff.AUIATUHSHHLg(HHHC(t/HS LHHH%Hk HH[]A\A]HLc(2HpHCHC1HCAMfff.UHHS1HHHuHE"HHt H1Hd!HH[]fHHHuHnE"H H9u1HHHHu H+E"1fDLd$IHl$HH\$0HH-D"HHHulD"HHtHI9IMHHHHuHD"HHC(tAHCHCHCHk HHl$H$Ld$H1HC(H1D"fDU0HSHHHH-8D"HuY5D"HHtAHHHHu<D"HHC(t5HCHCHCHk HH[]1HC(H1C"ݐHEHGHGHHGHH+@HGHH+@f.@ffDffu)HWHO(H|tLGLGIL;F@@1ffff.u)HWHO(H|tLGLGIL;F@@1ffff.fk@'fff.'fff.'fff.HO(HGH|tHwH| uH1HA1HH=6IHkHH)1H4ffff.HGHNILGII9|DAuLWH(J|tHH+H9}ف @f uBHCu5uzHOLG(HCI|tHGHGHxH;~HvC|JHqCuu0LWLO(HeCK|tHWHWHTCLZL;^}HVCHCCÀH!H!HEfDuuLFL9G u1t tffffff.ATAUHSHH t-HCHCHCD eH[]A\H5,@"H9w ~D$H(HL$|$HC(u H?"HC ff.ATAUSHH t,D HC HCHC@+H[]A\H5?"H9w ~D$H(HL$H|$HC(u Hn?"HC ffff.6@t(@8u@QtL¾2fHSHH9rH>[HG!H 0H[1AS1H;<H;HJA1&H3 fff.AWMAVAUATUSHHH(Ht$HHL$H$cHH=ILHH9HH9tHHHHL5H9HGHHHIHHIHHImH$HLHHH$H$HLH$HLH;\$1HLHLHL֗ILLL=L\="Mt LN="H(L[]A\A]A^A_ýHH9HHHHt}HT$Ht$HHH$1HHL"tFH$Ht$HIH<$L+D$1HLD$H|$H;D$siLL$IHH<"LE1<"ME1HH9HH9E1HHL."tH$Ht$H<1H;D$sLT$IHHHL!KH;"affffff.HSHHu[H۸!H |-H-Al1H;H;H>1H3 MUHHSHHHH}HþmH9HBH[]ffffff.USHH9v4H_HHHH߾H"HHH[]H1[]UHSHH~HHt?HUHx(Hu(Hu;HMHUHEHK HSHC@3HH[]ffff.USHHHHF(~ HH)H;O|H[]HHHȾH?HHkHH)t#LLG(H=.1HIH4IHC(HH59"HC H9HMH9uwHkHmeLKHk(J|jHCHCU uH5`9"H9w ~D$H(HL$ |$HC(uH09"HC  t0H9{HT$HiH|FH3HT$HBff.USHH*Hq1t H[]ff.SHq1t3[SHq1t#[UHSHH: A1A uH[]uA@u/HDLH8qHH߃AHAfDUH1SHH t5ҁ HpHH߃ZH[]fffff.AUIATUHHSHHH5V7"HHH?HHLkHXL)HDHE IH9HMH9uTMH]HMHC~H=+Hu(J HH HCHy H[]A\A]LE(I#NJM HE tH9~HHrtIMHHff.USHHH~ HH9O$3@uLKHk(J|H[]HHȾH?HHkHH)t#LLG(H=+1HIH4IHC(HWH5 6"HC H9HMH9uHkHai t8H9~HT$ HHK1Hf~WH|uHHT$ H@AWAVAUATUSHH(HL$L$  ȨH~HzHFH9BHIIvH95(5"HM5 5"HC H9iIV(L}(L)L%}*E1 HT$LUIM9O L; *J,HL$Hl$J4L; )XL; )L; )EAH-q)11A L1III1HIHIE1I9H1҃ILHA9H 1HHLcKH׃~HK(L\$I J<M;nIFHCHbH53"HCH9HMHC H90Hy_Ht$HH([]A\A]A^A_H$HH([]A\A]A^A_LeHI L; d(OL; g(A L; L(EAL; q(L; (L; g(L; R(EAVHt$J<OE1IH|$JH5~+"HS LkI9IMH9H6WHHL[]A\A]A^J|uIHHH[]A\A]A^ tPH9HHHL$HL$H[]A\A]A^è t0H9rHHbHHHL$HL$HH;fAWAVAUATUSHH(H $LD$   ȨH~HzHFH9BIIIwH95(*"HM5 *"HC H9!IW(M^(LE1 HT$InHI9OL; J LL$HL$K 'L;L;TL;EALx11 L1HII1HHH IE1LtMH1҃HLIA9HH{(LD$J, 1HH~IOI I9WIFHCH9H5("HCH9HMHC H9HTH4$HH([]A\A]A^A_L; L;yL;YL;EAHT$HH([]A\A]A^A_Ht$K,N$E1JMD$Il$(J|_LHeH94 HfyD$Ld$M9'LH#wHH9HCHH9HH9H5H9HH9HC{LHH$PLHHBJLHH$P"H$x"$PH$H"$ L"L L9IBHH9HH5H9sHH9HCH5H9~HH9HCkAWAVIAUIATMUHSHH8Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$ @H$(urukHsHK(H|L$MHMHHL菕$LLL9qH8[]A\A]A^A_MLHHLuEu#t~LHLFHLLLpLLH}H](H|uL¾LdvH$("$EL"?AWIAVMAUIATUHSHH8Ƅ$0EHDŽ$HDŽ$HDŽ$HDŽ$ @H$(1 AAukLCH{(J|L$MMHHLL$LLLoH8[]A\A]A^A_LHH_uEt@fthLLLMH](J|t1ALAt@A11LV|LLgALEQcL: "f.H$(% "$ AWMAVIAUMATIUHSHH HT$PH$PH$PH$PƄ$@ 0HDŽ$H H$HDŽ$P H$ HDŽ$X HDŽ$` @H$h Ƅ$ 0HDŽ$ HDŽ$ HDŽ$( HDŽ$0 @H$8 Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$ @H$ Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@HDŽ$ Ƅ$HDŽ$E$HDŽ$HDŽ$HDŽ$H$AEK3@AL)RHR H RL[LC(K|HCHCI;E1A$HUHM(H|uLIt$Il$(H|H5q!Hi1҅AL14SHĸ []A\A]A^A_E`ML$I|$(J|5L$p LL\$ -aLT$ L$1HLD$H|$MBL$ H$@ HT$ LL逤$DŽ$ HDL$H LHHT$ $@ HDŽ$H Ld$0L$ LH$ HT$MHHHDŽ$ HL$(HL$ GHT$0H5+!LLTHL$ HT$MLLHL$ MLHHBHL$ HT$MHH$@ $ p$`L$PL$1A H;l$(d$@ -H5p!LLAL$D|$(Hl$ MtLFt*MHHLL~HT$MHLL(MHHHHTHT$MHHHMHLLLj$ L$8 L$( K|`$@ D|$(N$>A2D A$@ ^C$ $$H$]"HAOA11LOLLo3AA EE A tu`uL@u9u ILELLL?ALLAhAMIAMIAMLLE3cLL$LL$LT$-]LL$H5!LLV?Hl$@HT$ Hl$L$D|$8Lt$HMD$0IIHMLHHHL$HT$MLHHIl$0L$tNAtMLHHHL$HT$MLHH`L$늺1L$H$IH$L$MHl$@H$MH$H|$0LψL$@D|$8LHt$8HLt$H|$@L$X HHL$0LD$8H$h H$` H$P L$H @$@ H$"$VH|$"6H$ "$H$ "H$8 }"$ H$@ b"H$h O"$@ f.AWMAVIAUATMUHSHHHt$1 AAH{Hs(H|t?Ht$HHLLLLeH|$HL[]A\A]A^LA_deLEH](J|ALH|$1nA $H[]A\A]A^A_MLHHu9Etr1L$H|$1A $H|$HL[]A\A]LA^A_;1LH|$1A $[ALt2H|$LH;u#HLL[]A\A]A^A_H|$LL"dHAL[]A\A]A^A_11J@AVIAUMATIUHSHu>LHEtz}5LLHHuxHCHCHI;D$|[]A\A]A^LLHHXAE@pAMuHsHS(H|u ApAEHHL[]A\A]LA^AM@AWAVAUATIUSHH8HT$H $H$0H$0HT$0H$ H$Ƅ$0H$H$HDŽ$HDŽ$HDŽ$HDŽ$@Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@Ƅ$`0HDŽ$hHDŽ$pHDŽ$xHDŽ$@HDŽ$ Ƅ$0HDŽ$8HDŽ$@HDŽ$HHDŽ$PH$XA4$IT$@sHAIl$HI|$(H?IH|HD$ H$L$HVLL$H$LLM)8HDŽ$AD$ID$HHMeLH)HT$!H $HLLID$,eH $H5x!LHIGH$0L$`L$LmHT$8MHLHHAHL$MIHLH轄MIHLLL覄F$6LHLd$ L+d$|$,t7MHHHLg$`LL|Hs(1A HHILc$" $$`" HHt$H$H$HDŽ$d_H8[]A\A]A^A_H $LLHID$HHH|$xaHt$H@7Ld$(HHHL$ 1HEH$Ht$H^nH$HqXHT$H $HHHGuH$H@H$`!H$!$`H $HT$LA$g1Hj$ H$H߁輻-Hkt$L)6HAEDT$,H$!'H$ !$L!H$!$ffff.AWAVAUATIUHSHHH$H$Ƅ$@0HDŽ$HHDŽ$PH$81H)H5u!H$hHIHHDŽ$XHDŽ$`@HDŽ$ Ƅ$HDŽ$HDŽ$ HDŽ$(HDŽ$0 PHItXH+sL$pLHsQIDHLLHL$pXM@H[]A\A]A^A_HHL$ALL$2QHKID$DŽ$HH9}0H|$E1HMcHH?HAVH9J}AH$L$@HL$EMcހ3H$NTHHK|H$L~3H $IHt$LLTaH]s!ILLLaILLHHhbu Aw$@uH$hf!$@uH$@L!HLHL$pZfAWAVIAUATIUHSHH8 7HVHN(H|GL$ HLDŽ$ },L$0L$0L$0LD$0L9Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@L$Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@L$Ƅ$`0HDŽ$hHDŽ$pHDŽ$xHDŽ$@L$Ƅ$00HDŽ$8HDŽ$@HDŽ$HHDŽ$P@L$XuL$0LHL0HuL$, H$H$IEDŽ$ L|$(L$`HL$HHT$HD$Ht$ H|$ HL$(LLDŽ$, H$H译$, A HKHsH$@uH H)1Lj&LEH|$LLHL$LD$_LD$H|$LLH~^u*LSLK(K|tHt$H|$L%|wDe(LLHD$ LLHELLHW$$$`t~$0tZtFH8 []A\A]A^A_̽uA$'111H/>1ɺ1>H$0!H$Xw!$0Ld!tH$Q!$`UH|$9!5H$&!$H|$!H$!$HD$ LH;LLLHeLLHGLLH該LLHKV1HwfAWAVAUIATUHSHHH H$HT$H$0H$0H$0Ƅ$0H$HHH$XLHDŽ$HDŽ$HDŽ$HDŽ$@Ƅ$`0HDŽ$hHDŽ$pHDŽ$xHDŽ$@H$Ƅ$00HDŽ$8HDŽ$@HDŽ$HHDŽ$P@HD$n,HT$H$( H$0  H$( H HcHdH$( LeHm LLK(HEBMHCHCH$( D MNt%IL$Lt$(L$L$LVILNIHD$DŽ$ H(HH|$(Hl$ H$0AH|$ ~7HD$ E1Ht$0AHPMcHH?HAT$HJH$`Ht$Mc܀3LNT0HHKLH$L而L$H$3I9Ht$MLHH>YHGk!MLHHvYMLHHHRZu AEeHt$ H|$LHHT$(Ht$MLHMLHHHY$AM@_$`,Z$0HH []A\A]A^A_Ht$H|$I)LLLD$EHt$MLHHHD$H$hXAM)Nd%L$Ld$(Hk Hk -H$( HHH|$H5i!NtHt$MNHi!MHA<$EyXH$8HH$8LD$H$@IHI+HH<HqH9|)HH$8HIH)D$ ?H$8DH8OH|$h!_LH軮*H$0@!gH$X-!$0DH5!H9s  H{(H$? Ƅ$? 虧$? HC(u H=!H{ H$( H$!$`H$!$H$`!AWMAVAAUIATUHSHHhL$0Ƅ$0HDŽ$HDŽ$HDŽ$LHDŽ$ @H$(DIEHLLHH$HH$0gH$0LHAt81MMHHH}$t;t,Hh[]A\A]A^A_ù LLDŽ$THk!H$([!$fAWAVIι AUATIUHHSHH L$LDŽ$ UFHMHu(HHH3gH=H9\HH9HH9HuH9HBbH9L}L}ILMHII HI;D$sA|$,8H$ L$ H$ HD$ H9Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@H$Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@L$Ƅ$P0HDŽ$XHDŽ$`HDŽ$hHDŽ$p@H$xƄ$ 0HDŽ$(HDŽ$0HDŽ$8HDŽ$@@H$H;M $L$H$IuL$PDŽ$ L$H|$IHt$LL$L\$M1LHHL$WHKHK1H+$LHM$LD$LH<$LHL$eSLD$H|$LLH]Ru)HSHK(H|tHt$H<$LpAl$(LLH߉$ 3LLHK$$$P$ H []A\A]A^A_H<HyHUHUHx[1H12LLH*KLL9r=HH9HH9H}H9IBHھL@L9H@H9mH(H9IBZLL9ICGH=H9r:HH9+HH9HBH蘨L L9ICLL9ICLHͧLL9ICH^H9HBH$,!$HHMLLLH9H$ LHH LH0HD$LLHH误E 1H~H<$w!mH$d!$bH|$L!ZH$x9!$POL#!IH$H!$ >H$ !3A@LH?HͦAWAVIAUATIUHSHH XHNHV(H|H5%`!HjLmLmILMHIIHHI;D$/L$ LLDŽ$ A|$,L$ L$ L$ HD$ H9Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@L$Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@L$Ƅ$P0HDŽ$XHDŽ$`HDŽ$hHDŽ$p@L$xƄ$ 0HDŽ$(HDŽ$0HDŽ$8HDŽ$@@H$HM<$H$H$M]DŽ$ H $HT$IL\$L|$L$PH|$LLHH$HHKHK1H+$LI4$LD$LH<$LH$H MLD$H|$LLHLu)LKLC(K|tHt$H<$LiAl$(LLH߉$ LLHE$$F$P$ t_H []A\A]A^A_LH¢111H+KuEuϺ1H"HD$uH$ !A@LH?HqH$ LHHLH'>H$H!$ L!zH$xo!$PH|$W!LLHHLLH;LLHCH$!$=H$!$:H<$!AWAVIAUATIHLULSHHhL$Ƅ$0HDŽ$HDŽ$HDŽ$LHDŽ$ @H$(mL$0L8II9L$LIML$AV,MuHDŽ$T$\LHH$0L@MLLHHHHLHH$tIt:$L@ ]Hh[]A\A]A^A_HHL!H$(!$fffff.UHSHH菇3HuUHxHHمHDHH[]HH9tH3ӅHtffff.AVMAUIATIUHSHHD$ H{Ht$ H&D$ HIEH9HH9EHx)HLLH)LL脨H[]A\A]A^LHL)tLLZHLHMLHHLvu6LL=LHLff.AWIAVAUIATMUHSHHDŽ$Ƅ$p0H$Ƅ$@0Ƅ$0H$HT$HDŽ$xHDŽ$HDŽ$HDŽ$@H$HDŽ$HHDŽ$PHDŽ$XHDŽ$`@H$hHDŽ$HDŽ$ HDŽ$(HDŽ$0@H$8`ETH}fE\H$H$>IUH91HHH9"XHHIH)Hl$H;S H$@LLHH'<LHL$LHLnH$![LL#H$!$pH$p!H$hz!$@H$@_!H$8L!$AVMAUIATIUHSHHD$ H{Ht$ HI$IT$HH9wzD$ usEDHNgmLAAkHcLHH]H9HOHHob1%}LLH9LHLI]<H[]A\A]A^LL諙MLHHL赡u%LHL봐H Iv_HHHvL IcN ALIIGwIHd HIHHHI)LHHtxw.Hft LHHй 1HHHk I)LHQHuHй'1HLi'HM)LH thw~H tlH T&HAd1IHkdHI)LH]xEcL1HHHI)LHo#HƤ~HHvHH tHxH@zZHrN Hw)HLA1IHiРHI)LHt%H uHAʚ;1IHHiʚ;I)LHA1IHiHI)LHA1IHHiI)LHй1HLi؀HM)LHA@B1IHHi@BI)LI#NJE1M9AMLM)Lffffff.H9=viH;=Ps-H;=7sH;=&sH;=!҃H;=*rH;=1 sH;=҃H;=҃H;=7s%H;=r?H;=sH;=҃ H;=)sHI#NJIxE1E1HII#NJL)IH IIIIv8uIILIHHLLMM!I4 M)LC Ll$HHt$@H55!H9HMI9 L9HHt$0HK(1LL H$8HLLH$8HvzLLH$8HvbLLH$8HvJHHH$8Hv2HHHt+HHtHHgIOMnHIV(Iw(HMH$8H5!HC H9HMH9t, H9~HT$HxH$8H5LC 11A<$Mg@2}MfHK(Lc HH|Hpf.H;YH;<rbH;;HHOH;HH5DH;ѲHH DH;HHDH;ɲHHDHHHHxHH9HaHHH9uJf.H;qHHuDII(Iv(LHHH$8)HHT$HuHCHK(HT$Hu&HLD$HLH A$UuHuHM(H|1оH!/|HvHHD$IOHtsIV(Iw(MFH|$u H{(ۻ!H$8HL$HK(HHs I_uI|$IT$(H|+2EEMO(IVIv(H|$I HvSIL9Iw(I~(L$8Ly|HD$H|$CHT$HzIW(M^(HLHL$HT$(L\$ HH$8ZuHHD$tLHHL$jH(uHHL$?Ht$ H|$IHT$(MHHD$8Ht$Hr!1HT$HyMF(IG(HLHL$LD$ HD$(~HH$8tHHD$HL~E1HHL$tH]tHIHL$tuHT$(Ht$ IH|$LMLT$LT$uH|$!LT$HD$MOL!AHT$HsHCHK(XH|$X!#HT$(Ht$ IH|$M1f.LG(HWI|LHvIH9HI1IHHHH9HILVILIILIHHLMM9HHIIIOML9LIrIHHLMM9HIrIIIOML9uiLIrIIIK HI9uLLIrIHL MM9u2HIrfHHIHHHIHLML9tHwHHH?1HH9~&I Ht1A HIHkH1@uT1ÐH\$Hl$HLd$Ll$H8HIA uH5&!H9w H#NJ1D H9LcˆHC(HHPH)HH(u^1HCHH;siH;ҫH;H;HHHHl$ Ld$(HSLl$0H\$H8HCH@H;rH;s+H;H;sH;HH H;H;rzH;HHbH;rKH;# GH; HH4H;֪HH!H;HH H;HHH;HHH; HHD$H(HL$.n|$HC(u HT!HC ,Ld$IHl$Ll$H\$IH(Hv(IL$IHH|HHMLI|$I6P^Cy HIII?HL)HHSH9tHHô!HU H9HMH9tE OH9H}(MHE$MMl$MD$H]ALEA LmD]H\$Hl$Ld$Ll$ H(fDI9tH94!HHM HM5%!H9uPMA4$I\$HUIT$H}(H]H HƈMIL$HM!x] t^H9LHkm1H]ID$(IT$vLHHJ<)IEID$IMMD$MHMuIN,IEEIu(ID$(IAuHDŽ$8ME(MUH$(HDŽ$0ΐ@$ K|DHL$L$ IT$II1HT$HH $eH$Iׅu+$PwH$x!$P\IL$HT$HfeHK(H$P!1HT$HH $dH<$IHT$HdHK(HT$Hj[Md$H5?!HC II9IMH9t  tDH9(LK(M|$K,D+LcAE D+K-HT$HdHT$Hcff.H\$Hl$HLl$Lt$HLd$H8H~(HvIIH|HHMH9H)I6P^Cy HIHKII?IM)OO TL9IH9H,!HS I9IMH9LC(LHHL+Du LmLcALkA D3H\$Hl$Ld$ Ll$(Lt$0H8@ ILC(HCLHCIu;HMHK @3H9H_!HS I9IMH9t H9LK(LHHLPI}DHuLcAHsD @;LH5!H9s BH{(HL$D$a|$HC(H!HC LHHE1uIH{(HSLHH5!IHC I9IMH9C tHH95LHb%LHHatH}(HuLHHEaLH8aAWAVAUATIUHSHHxT$LD$HT$0Ƅ$00HDŽ$8HDŽ$@HDŽ$HHDŽ$P@H$XHQ(HALDMHH H@IH1IHHAMDF$H=JcH4:uH^AM@Et+H^Eu1H^LHHfLKIL+ LM룃~(HWHH+HW H\$Hl$HLl$Ld$HLt$L|$H87I@ƨHWLwHMMdI9;u(L}HEM9HI9(H\$Hl$Ld$Ll$ Lt$(L|$0H8DI)HLLs}$IvAEMAEt@AE@D]$LKc4J Hw:YAEÀMA]f @AEX1Mt@H{(HsHkHSLC(HIH;H;ƑsdH;H;syHLLBLKL9M^H߾HCLHHMHHKDH;iQH;l sH;VHHLJ4ZL1LSL9U@H;Ys/H;8H;;sH;%HH @H;AH;$H;HH{HAEAE$Htv1I`H{(MH1A IHu?1I%DH;HHH;>HH H;HHH;@HHH;MHHHuHH)HH9L}M9H{Lc(II)I|AM L9HLHH)hHHcL{LHAAE€EAUtLKLC( @PAEK|trbLsHEP MHH\$Hl$Ld$Ll$ Lt$(L|$0H8_H{(0}(HKt HH+MHKH AM|HHS(H|tȃ}$v$uL9L{HAMBDU$L ԑKc N AHQYAM@t)H.Yۨu1HYLHHyaHEHH+EHCIHI)LLAEL)sL[(LsAAK|E}L;eu  AEgAMH{(LsHHݍJTHCLHH\$Hl$HLd$HHMLHHHl$H$Ld$Hffffff.H\$Hl$HLd$Ll$HLt$H(IIMŨuC u;MMdLLLH$Hl$Ld$Ll$Lt$ H(ZMLHHL_tH$Hl$Ld$Ll$Lt$ H(MMHHLH$Hl$Ld$Ll$Lt$ H(Wfffff.H\$Hl$HLd$Ll$HLt$H(IIMƨu@ u8MMwLLLH$Hl$Ld$Ll$Lt$ H(mMLHHL)^tH$Hl$Ld$Ll$Lt$ H( MHHLH$Hl$Ld$Ll$Lt$ H(VDH\$Hl$HLl$Lt$IL|$Ld$E1HXH9MLD$t]Ld$LHMD$uMLLHHMu^D$ EH\$(Hl$0Ld$8Ll$@Lt$HL|$PHXH$Ht$ZHIIH$Ht$uHHTAuI(g!AuLV!zfH\$Hl$HLd$HHIH11LHHHl$H$Ld$HH\$Hl$HLd$HHHIxJ'H{(HCH7HGHHCeLHHHl$H$Ld$HEHHHH9HE땐AWH IAVAUATIUSHH8I9HT$pLL$(L$'HT$EI*LD$oMI*^[Yf.WTH,HHHl$H9|$1H5!H9t$HMt$HC H9QILK(GMAH{(HL$I#NJHIIHHIH{(CH#NJL>HHt}-H{(CH#NJLHH{(HL$I#NJHMfIHHHIH{(CH#NJLHMt$IMt{H{(HL$I#NJHIHHHNH;l$H{(HJI3H;l$xH{(HJIafHLc(HMHCHk D$'IH;H;ކH;&H;HHHL-!LGHT$HH $GH $HT$HH $ GH $HT$HG;HT$HFf.H\$Hl$HLd$Ll$IL|$Lt$H86IHMLr@PEL;qHSH HH)I9nLEH}(J|HUL)HHEH9CHxzLHLMt$Mt$IL;sHKHH+ I9AMLHLH\$Hl$Ld$Ll$ Lt$(L|$0H8kHHLLHHt{$Mt$w+D[$L OcK4 f.HwLIT$HSIT$HH;SSH{HH+;H9|CAM@?1HtI|$(It$ϺHL讷IT$H;~LLH\$Hl$Ld$Ll$ Lt$(L|$0H8"KL1L2HA${IT$Mt$@JL2H;KHkHH++H9wA EwH=A$01HMHLHLRt2H\$Hl$Ld$Ll$ Lt$(L|$0H8Mt$jEALHLH\$Hl$Ld$Ll$ Lt$(L|$0H8I|$(1HmI|$(HHtf1A IUHID$L=-!IT$ HpL9ILH9t A$ tFH9'IT$(HID$IT$LLCID$LLBfDH\$Hl$HLd$Ll$H8HIIͨ H5!H9w HmHK(HCH)HAHCHH;q~sSH;@~H;#~H;~HHHSLLHH\$Hl$ Ld$(Ll$0H8H;=~s+H;~H;~sH; ~HH H;)~H; ~rzH; ~HHxH;}rKH;} ]H;}HHJH;Z}HH7H;}HH $H;D}HHH;}HHH;}HHHH9tHݺ uD$H(HL$@|$HC(u H!HC Hx1ffffff.H\$Hl$HLl$Ld$ILt$HHDŽ$HDŽ$HH{Ƅ$0HDŽ$HDŽ$ @H$(HoHHL$0LL$H!MMHLLLL$&H$H$HXHHH$`H$hL$pL$xL$HĈHHHL$H MLHLMtA$uwH$H$HtFt2HHCYHCPH MHL_FL̅!@H$(!$uH$(!$HLw!HH\$Hl$HLd$Ll$H82AHI@HRHH9HMH9 !H{ HHM!H9uR HSHU@3HKHSHUH{(Hu(H\$Hl$ Ld$(Ll$0HH8cD A H9AD 1HDEuAÀHAt @AH\$Hl$ Ld$(Ll$0H8L]LU(K|HLHHLD$&HHLD$tAHCwA|$$nAL$$H~|HcL$AHw(KH{(uf;H2)H{(HsLD$WHLD$HLD$,LD$H1HHHl$ H\$Ld$(Ll$011H8LLHHLD$KLD$HHHl$ H\$Ld$(LLl$0H8LHHb<jDED H}HuHMAAH{E HsHKDHCH=c!HS HpH9HLH9t H9gLK(IHCH{(HH1Ҿ H~1HLHH;0LH;LD$jHCxLHLD$:LD$f.IHHH:f.LLd$I_Cy 5IH\$Hl$ILl$Lt$L|$H`HHH|$ IIKITI)AH5uHM)II N4HtI*IEHvH5H=yLcI8Id H1ILHD$ L)IHHHAHMJL9u{I1H\$0Hl$8Ld$@Ll$HLt$PL|$XH`IIwFIft Ht$ E1H 1HLk HD$ L)IHaI9IVIuH'1HHi'HD$ H)IHI I H T>HAd1ILkdHD$ L)IHI]xEcHo#H1IHHHD$ HI)HƤ~HM, JDHHLHL;Lt|IvH#I t.I-I@zZJ<29HrN DI'w2IBHA1ILiHD$ L)IHIt.I uAʚ;H1ILiʚ;HD$ L)IHHA1ILiHD$ L)IH`LD$(LT$ HTLLLHD$LD$LL$L$LL$HD$MLD$L$L|$ N9<HL|$(HIAH1ILiHD$ L)IHH𿀖1HHiЀHD$ H)IHA@BH1ILi@BHD$ L)IHzI#NJE1IL9AMLT$ LM)OJ;4IEff.LGHFI9uKHGHx9H(Hv(H HH9uHxH HH9tH91DI)MHNHWIHv(H(HG(HOHVH~(Hffff.H9tlujuJHWHG(H|tBLNLF(K|t$HGHGLVLVLXIM9u|Ã@H~HN(H|u1UH9SHDAZDEAHSH(HBH<LN(LVK|AD8LCHNHvLHkH41HHH9u@I9uKHxHI H9uHy1[]fDH9wD؃[]}D؃kАI)M$LLIJDAEkAAHHLL#DAAkyHVHF(H|cDɃkUDۃkDA)6tڃAD) u u\ t  uAWAVAUIATIUHSHHhƄ$00LD$HD$0LL$(DD9HDŽ$8H$XHRHAHDŽ$HAHu(HDŽ$@AHHDŽ$P@E1H9HNHL$ HMH|rHHuI+uH)LD$I;0H9MMIM)I9Mr<M9H5x!IT$ I9HIMH9A$ H9H9HC I9IMH9 @H9MIHUHHu(IM(1LK(H.L)HIIT$(LHL)II)InL,H5=x!ID$ I9IMH9tA$ H9{Mt$J*L-8mL9H;mH;lH;lHHH|ID$HL}A,$HIT$D A,$L|$I90IHS(H5w!HC IjL$I9IMH95 H9LSHI9#H;HlH;+l H;lHHLT$0Ld$ JtULcHHSD ڨHh[]A\A]A^A_I9H9H5v!IjH<L$u!N$HIHL$H5wv!HC I9IMH9t2 H9~$HT$(HLT$D$/D$HS(LT$LSJ"I9H;uksmH;TkH;WkH;=kHH H;:ks_H;kH;kH;kHH H;kZH;k:H;jHHbH;j@H;jH;jHH}H;ejqH;hj ^H;NjHHKL9KZMIOHUHMHU(Iu(H{(LL1LIIT$(LHM)LIwInH<L,lN,HIHL,FH9eHT$(HH虭A11LrH;eiH;hi H;NiHHH;iHHH;iHH%H;-iHH H;iHH H;hHHH;hHHMM(LC(Hu(I|$(LT$D$I LD$QLT$IT$(D$ILT$H;hHHH;hHH(H;hHHH;hHHJH)HL$0HL$(HD$L豽D$H$HLLHHteH|$ H{SIIM(HU(Hs(I|$(LELT$D$LT$D$IT$(Ll$(AM1Ln21H_2$0MH$XIr!$02HL$(H)HHtHT$ HSL$0HL$(HLD$L萼D$fHMMJ<*IEu IHH[J<"ID$IHHT$(HLT$D$*HS(D$LT$%HT$(LLT$D$l*IT$(D$LT$HT$(HLD$*D$MM?H$0q!Lt$(A}LD$(LHHLD${A$D$QFMt$LS$HT$(LLT$D$?*IT$(LT$D$[HHT$(HD$LL$|)L\$MD$MM!M9f%HT$(HLD$<)D$HT$(HD$LL$)LT$D$AWAVAUATIUHSHHH$0|$,LD$L $Ƅ$`0H$HDŽ$hHDŽ$pHDŽ$xHDŽ$@ уML$I|$(T$D$J|oLmL](K|#HD$M|$HMMt$L8HL$ Lt$IL+}IL$`H $LHL蚹L$xML$LIM)L9 L9 H5n!HC I9IMH9 # H9I)MD$(IVIv(H{(I)IIHK(ImH<L4!H52n!HC I9IMH9^ vH9DDT$LkD2T$D ҈HH;cH;bH;b?H;bHD$ H+D$LDNtEILsM)MMHL)H|$, ML1MHLHHHLMM9HLNHLIIO4ML9LHHHHLMM9HIqHIIO$ML9LIqHHHL,MM9ulHIqHIIOML9uOLIqHHH HI9u5HIqDHHHHHHHHLML9tH9HHNHN|=2$`L{H$(l!$`H; aH; a sH;`HHHD$ H+D$H|Ht}IHM)MHSMH1IHHIHL$ML)H-H$L{$`:H$Ht$HHĘ[]A\A]A^A_IM)H9\L9\H5j!HC I9IMH9t' |H9~H$H$ML$ImML$(HUHu(H{(I mIIHK(D@H5j!HS ImL4I9IMH9 H9|$Lk@2|$ HH;e_NH;_s6H;__H;b_?H;H_HH ,@H;a_sH;D_H;?_HHD\$LkD2\$D ؈J1H;^aH;^HHDH;^HH DH;a^HH}DHH1@H;^HHUDN4HI~ZJ<1IFHH5h!HS I9IMH9 2H9H$Hq"HK(HL41HI9LMtH H4HH;]HHIHAIIL$(HU(1H{(LE褯LcH$H'Dl$HM1D2l$I+L$HA葰H$Ht$HLMLE(K|twDT$HߺD2T$A'H$ dHL$MLHH-/FEA$uj1о!Hi'H$H&L$`H $LHLLѱLmL$xMH$Ht&HT$A2$HHJ!HH+ 1jH4$Ht$0L$0L$LHHH$XLƄ$00HDŽ$8HDŽ$@HDŽ$HHDŽ$P@)qu $0tG1HJ&$0uH$X8f!$0Lf!H$XH$HHlue!$0u Le!E1HLkAL9M9H$HHK(1L,IIML9H$11HH˪H#H$IT$L$L$\H $HT$H;VH;VH;VL JtJH$LL$H $MLLMLLHHDŽ$\e$\R$H 1MMHHHHLL$\ $,HL$I(H$HIH;VH;3VsQH;VH;VsH;UHH LNZLH$H;U#H;UH;UHHfDH;iUH;lU sH;VUHHDH;!UHHmDH;AUHH U$\Ld$A $Ae$$D$,H\$AA@D +Hh[]A\A]A^A_H;THHDH;THHDH;THHH MLHH&uH M1HH$\H $,HLt$H-SDŽ$\N|M)I9tqH$H9^!IM HHM5^!H9AE$L$H$I}(IUHMEIM H$AE=L =QL$\MIcI,f.H2MLLLLLLLLt"HLLMLLLL辿AEI}M](I|u$\AE wH9HT$LMi1ɺ1L'1LzH\$ @L1ɺ1H|$@H$C]!$>H;RHHqH;Rs8H;RHHUH;8RsfH;Rs8H;RHH 0H;QH;QHH H;Q H;QHH H;QH;QH;QHHHT$LHT$LO7AEH$lH$\!$2H$\!H[!HM11LHH+MaHt$Ap1ɺ1L@H;PHHH;PHHDH\$Hl$HLd$HXHըLV(LNODMteuxHNHvH<HHHI_Cy 5IHHL$BL)XH2IXHLH\$@Hl$HLd$PHXèdHKHCHHNHH5H|$0Hs$0HD$ HKH|$(LC(I|NHELKL9I)ALLLL$H?IHLLkL`M9LD-Ld$ $ و $LT$(LL$HHD$HL$ODH1ҿHHkH)t&Hv%HsL NL1I`II HsL_NLH)I$IIKD1ItIIMtÁMImLLNI$HIuRALA'HoH9 HL$6;D$HsHKHCAHt$D HL$HD$@<$fDHH13AWAVIAUMATUHSHH(Ƅ$0HDŽ$HD$ HDŽ$Ƅ$0H$ HDŽ$HDŽ$HDŽ$HDŽ$@HDŽ$HDŽ$@L$IpIHH$IAP,H$LL$H$IFH$DŽ$DŽ$DŽ$$ HIFH$DŽ$DŽ$AL$L9L$tnHUH9NW!HHM5CW!H@0DeL]LMHu(H$H$HL$AL$A D$+6L$IT$1Ll$IHDŽ$hH;$tpH$H9V!HK HHM5V!H9D$L$H$H{(H$HSHLKAHkD ؈y5L5IIHcI,L$HMLHHHLLHŷLt#H$HHMLːLLH蝷HsH{(H|u$tLd$A $ D$[$xm$B'HT$WHT$D$D : D$$$LHH([]A\A]A^A_ H9DHT$HnrHT$H<$Ut^$HUQL$L$H56 HHMLLH$L$Hl$EX1HDt$HNgmH賜$[H$ T!$mH$HT$LHtL$PL$DŽ$HDŽ$Ƅ$ LL$HHDŽ$(HDŽ$0HDŽ$8L$HDŽ$@4HT$H5 H`$H$ HT$uL$L$K|mHtGH$LMHH蚺HL$$ 6HsH{(H|u H$MLHHSHT$MLHHC$ u$ F$HT$H߁t$1ɺHۚH$=R!H$*R!$H<$R!HT$H uKH$Fffff.AWIAVAUATUHSHHxH|$LD$D&EDd$'AD2ALR(LJD$(K|9MmMMLH1HHHHI9 LHLYHLIILHHHHHI9HHHIIKHH9LIKHHHHHI9HIKHIIKHH9upLIKHHHHHI9uSHIKHHLML9u9HIKfHHHHHHHHLML9tHMTAUt$(E11D$,H{HK(H|AdAK|H5q ED$lH9:HC(HSH|H=O!H{HKL 9Iu'H H{HSHC(L$'HKDd$'LC Ht$H|$8H|$0HL$@HT$HLD$PHD$XALuAPDd$0LeZIHL9HD$8HD$@Od&uHH?@8MOI?LI3GL)H;CH;CH;CH;CH;CHHLH9&DT$,ELL$H|$MDHHHx[]A\A]A^A_AkE11D$,|$(uLSLK(K|AAuAHuHE(H|H|$A1ɺDkH;BH;{B|H;fBHH D#LU(LMEDd$'EAK|DD$( MTM1Mu1HI9;MMtHk1A LIHMwM+7HT$I~vHT$HLH9uLH|$D]fDd$'E1D$,E1LD$H|$HLHjHT$uH55 HH\$tHT$H|$L uLmH](J|taAWAH|$11讔H;@HHH;@sXH;@HHq|$,t AHT$H|$5 |HAb }H;@ H;@HHH=K!HJ*EHSLl$lH|$LHMH)D$l%YH|$LjIHH9HHL$H|$H5 H葕L|$HA/I_D A/H;?H;?HH 2H{HKMLD$H|$LHH:DuD;E1D$,D@|$'DL$()HNgmYD3Dt$'A`ILl$HAM@LT$A uHULE(I|AAH|$ }M7H|$H5b HL$ILI>H|$Lw H;>HHH5# HD]AAEkAAąmH|$1ɺD蹑HT$H|$H;l>HH1H|$HNgm1flH|$ H{HKHSHC(_H;=%H;=HH IHL$H5, H|$HHHL|$E7I_AE E7Hl$M@H :HcH:L H 1MALHuLLHH)ULHHGHY:UHcH,SHHHCHHHC[]ÐHSIйIII!I!HHMHM]IIH)IH"HILHL)I"LsHHHH)>H"HHI9H@mHHMH+MbHHH)HH"HHIIH)H"HsILHL)I"LHu I9L)II H)IH HILH L)CI L HHDL)HH[IIH)IH(HILHL)I(LsHHHH)H(HHH H)HH HHHH H)rwH HHDIIH)IH(HILHL)HI(LHHHH)rH(HHHHHCHHH^I8HAWAAVIAUAպATIIULSHHH}H6IcDLH,D9MHD+HkHCJHI1H!I!~MIIH)IH"HIMIL)I"LsILHL)I"LrbHH9HI9HDHHxII H)IH HILH L)I LsHIIH)IH(HIMIL)rTI(LsILHL)r5I(LrHIH)JHH[]A\A]A^A_IHIHaHHHHHHHHHtrIHIH)IH"HIMIL)[I"LLHL)I"L HH9IHIH)IH(HIMIL)I(LLHL)I(LHH9fDII H)IH HILH L)I LrNHu1H9v,@fDIxIH)I"HLsHI(HLsHHuH9wH)IHrIHSIйNIII!I!HHMHM5IIH)IH"HILHL)HI"LHHHH)3H"HHI9HHHM,IIH)IH"HILHL)I"LsHHHH)H"HriH0I9'H0@HHMHqII H)IH HILH L)JI LsH@HHH)HH(HHHHH)HH(HHHHH)H(HHI9HHHIIH)IH(HILHL)I(LsHHHH)H(H9HL)f.H[HH H)HH HHHH H)rJH Hr#Hu I9L)H(HHsHHH"HHsHH&HH@Hffffff.AWAVAUATUHSHHXT$DHcHHH|$8H)HыT$DHHHD$HHD$0LD$8H4Ld$8Lt$0Ht$ IIHHH_H9Hff.AWAVAUATUHSHHXT$DHcHHH|$8H)HHHHHD$T$DH|$HHD$0H|$8Ll$Hl$ Ld$8L|$H4IHLLl$0Ht$HILLLIyM9rHT$H|$8HHHl$ :SLcL$DT$DL&HH,IIAO$L\$8HD$(M!M!Hl$ IL;|$H|$(LLL\$LHHHHIL\$"LپE1M7HD$IIH)IH"HILHL)aI"IsHHHI);H"I%HM9 HHHHD$HH)H"HHHHH)H"HsHHHH)H"HHI9vHIHHD$HH)^H"HHHHH)7H"HsHHHH)H"HHI9HIHHD$HH)H"HHHHH)H"HsHHHH)ZH"H3HtI9kILHyHL9*HHyHHMHD$II H)IH HILH L) I IHM9HHHHD$H H)HH HHHH H)H HHmI9dHIHHD$H H)HH HHHH H)0H HkHI9 HIHHD$H H)HH HHHH H)H H!HL)@HD$IIH)IH(HILHL){I(IsHHHI)UH(IRHRM9IHHHHD$HH)cH(HHHHH)H(HsHHHH)H(HHI9HIHHD$HH)H(HHHHH)sH(HsHHHH)KH(HHI9HIHHD$HH)rtH(HHHHH)]H(HsHHHH)9H(HHL)L)M)9IL\$ HHHHKHHHHHHH;\$t(H|$06.!T$DHOHHD$0Hl$8Ll$ Ld$HLt$0HLHLژL9rH|$0-!HX[]A\A]A^A_HM)HL)HgL)qHHIHL)HHHL)HgHQH+M)HHHH|$0 -!1(1!HfHH&HHH|H#HHHwHHSHHu[H H LHAl1H;H;H.1H3  XAVAUATIUHHHSHH9IuHL[]A\A]A^HVH9u91HHL1tHLIkKH|$@V !HĨ[]A\A]A^A_ZIH A?J HHD$H&UHSHHP HtHC HHHuH[ÐHo1Hargument must be a Decimalcannot get thread stateargument must be a contextsignal keys cannot be deletedFInfsNaNexponent must be an integer%s%licannot convert NaN to integerformat arg must be strinvalid format stringdecimal_pointthousands_sepgroupinginvalid override dict(i)invalid signal dictFalseTrueDecimal('%s')as_integer_ratiobit_length__module__numbersNumberregisterRationalcollectionssign digits exponentDecimalTuple(ss)namedtupleMutableMappingSignalDicts(OO){}decimal.DecimalExceptionDefaultContext___DECIMAL_CTX__HAVE_THREADSBasicContextExtendedContext1.70__version____libmpdec_version__argument must be an integerargument must be int of floatOO|O(OO)numeratordenominator|OOOOOOOOO(O)-nanO|OOO(nsnniiOO)decimal.Decimaldecimal.Contextdecimal.ContextManagerdecimal.SignalDictMixindecimal.InvalidOperationdecimal.FloatOperationdecimal.DivisionByZerodecimal.Overflowdecimal.Underflowdecimal.Subnormaldecimal.Inexactdecimal.Roundeddecimal.Clampeddecimal.ConversionSyntaxdecimal.DivisionImpossibledecimal.DivisionUndefineddecimal.InvalidContextMAX_PRECMAX_EMAXMIN_EMINMIN_ETINYctxmodulootherthirdexproundingprecEminEmaxcapitalsclamplnlog10next_minusnext_plusnormalizeto_integralto_integral_exactto_integral_valuesqrtcomparecompare_signalmax_magmin_magnext_towardquantizeremainder_nearfmais_canonicalis_finiteis_infiniteis_nanis_qnanis_snanis_signedis_zerois_normalis_subnormaladjustedconjugateradixcopy_abscopy_negatelogblogical_invertnumber_classto_eng_stringcompare_totalcompare_total_magcopy_signsame_quantumlogical_andlogical_orlogical_xorrotatescalebshiftas_tuple__copy____deepcopy____format____reduce____round____ceil____floor____trunc____complex____sizeof__realimagadddividedivide_intdivmodmultiplyremaindersubtractpowerEtinyEtop_applycopy_decimalto_sci_stringclear_flagsclear_trapscopycreate_decimalcreate_decimal_from_float__enter____exit__getcontextsetcontextlocalcontextoptional argument must be a contextvalid values for capitals are 0 or 1valid values for clamp are 0 or 1valid range for Emin is [MIN_EMIN, 0]valid range for Emax is [0, MAX_EMAX]valid range for prec is [1, MAX_PREC]internal error in flags_as_exceptionargument must be a sequence of length 3sign must be an integer with the value 0 or 1string argument in the third position must be 'F', 'n' or 'N'coefficient must be a tuple of digitsinternal error in dec_sequence_as_strinternal error in PyDec_ToIntegralExactinternal error in PyDec_ToIntegralValuecannot convert Infinity to integeroptional arg must be an integerinvalid decimal point or unsupported combination of LC_CTYPE and LC_NUMERICoptional argument must be a dictformat specification exceeds internal limits of _decimalargument must be a signal dict{:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}internal error in context_settraps_dictinternal error in context_setstatus_dictcontext attributes cannot be deletedinternal error in context_reprContext(prec=%zd, rounding=%s, Emin=%zd, Emax=%zd, capitals=%d, clamp=%d, flags=%s, traps=%s)Cannot hash a signaling NaN valuedec_hash: internal error: please reportinternal error: could not find method %sconversion from %s to Decimal is not supportedargument must be a tuple or listexact conversion for comparison failedcannot convert NaN to integer ratiocannot convert Infinity to integer ratiointernal error in context_setroundinternal error in context_settraps_listinternal error in context_setstatus_listcannot convert signaling NaN to floatinternal error in dec_mpd_qquantizevalid values for signals are: [InvalidOperation, FloatOperation, DivisionByZero, Overflow, Underflow, Subnormal, Inexact, Rounded, Clamped]valid values for rounding are: [ROUND_CEILING, ROUND_FLOOR, ROUND_UP, ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_05UP]X?B ??(P`PP`J|UPdQQJUP QQKU$`d``]#db c'cbc/builddir/build/BUILD/Python-3.6.12/Modules/_decimal/libmpdec/typearith.hsub_size_t(): overflow: check the context%s:%d: error:  @PT @ @ @ @ @ @ @ @ d'@Bʚ; TvHrN @zZƤ~o#]xEcd #NJJ*m=;976420/-+)(&$"!   }|zywvtsrpomljihfecb`_^\[YXVUTRQPNMKJHGFDCB@?><;98754210.-,*)(&%$"!     ~|{zyxwvtsrqponmljihgfedcba_^]\[ZYXWVTSRQPONMLKJIHFEDCBA@?>=<;:986543210/.-,+*)('&%$#"! $`%~5 w.YK=Se@aB(e f5D~/B.B0gh,=g8E% k:Z>q(ZTn!sӠx&RwZsj_2 ph`:~APl oVyK+[ hiGwp m^C,?̇v0,^y(Ft=JL8G[P)*CEh:!yk0ׄv\B6` '2%k€"aD2^.-.x r16H6a6lRi83-f:\ oG(?r/ف-AB%f¿z=#z?Z>P8?P?0@PX@@@@=>`?@?(@0hApAA A(BPB0PAPBB8ChCиCCD(D@D D0D@DP0EHEйEEFHGG G0HHI IIIIPhJJ(K HKppKK0PLLLLMHMpMNN`xOOhP QpSSSTpTTUU W Y[[h]^_P@_X_ _`_P_@``0a `aPb@bbp@cPc@eef`f8gg@g(hxh ipiiP!j" C%PC&C &C 'XD0'pD@'DP'D`'E'hF(F@(F)F)0G)H)8H*hH ,H,H.8I/J@00JP58L5Lp6M`7 N`CpNENEN GP IQQR`T@RZR\S@^S dpUpdU`eV@fPW@gWgY h\n]r@]t] w^z^z^^0^H`@x`pb@dd0HfhhУjj@`kkд@kxkkl(l@xllPm0mpXmzRx x4 Ld|HS C ,x8AvLrAw E $l~DK A O A @A[ A gKJ A ,@AKD  AAA ,*AAD X AAA 4,D^ A D<TBED A(D@ (D ABBA PDR,XAAG  AAA HGDv A xAAs A ,xBAA E DBA ,LAAG _ AAF |8DA] A d$hAJ t AA DM $Ap A Q8#D^$4PtAJ a AA \DM$ttAJ a AA DM$tAJ a AA hDMpAT$p:X0i A <.D\ A D\BLB A(D0D@` 0D(A BBBA L ZBBB B(A0C8GP 8D0A(B BBBA 0FDa A L E $N M E V J VL<8 BBB B(A0A8G` 8A0A(B BBBA $8vHS C A ,AXF0l AAA ,AXF0M AAA ,AXF0 AAA ,DAXF0 AAA ,tjAKD0u AAA , jAKD0u AAA `.D\ A pDR, xAXF0T AAA <.D\ A \(.D\ A |8.D\ A ,HAXF0T AAA .D\ A .D\ A $ ^Al A b A L4 @.D\ A T PDMl XDM, `AXF0 AAA 4 P BJQ Dp  DABA 4 BJQ Dp  DABA 4$ BDA D0T  DABA ,\ X AXF0 AAA , H AXF0 AAA , 8AXF0 AAA 4 (BDA D0T  DABA ,$ AXF0 AAA ,T pAXF0 AAA , `AXF0 AAA 4 PBDA D0T  DABA $ 5AAG bDAL 0 BFG D(Dp$ (D ABBD ` (D ABBA d p!AY E A !AY E A !AY E A< BBD D(D (D ABBA , {AID0M DAA L4 pBBB B(A0D8D 8A0A(B BBBA L yBBB B(D0A8HP! 8D0A(B BBBA  $A^, BAD ~ AEA $$AJ ~ AA $LI@A^A,tWACG  DAA @ZAf A qZAf A q4pMI Y E k A X E X4BMA J  AABA LTPdBBB B(D0A8GQ 8D0A(B BBBA ,p _ADD t AAA < BcW H(A0 (A EBBA 4P,BKD D0~  DABF LPN }l,)Ag,,&Ad,HaIP E $MVp A LXBEB B(D0A8GW 8D0A(B BBBA ,l,BDD q AEA ,x,AQD0~ AAA ,$MMD@x J  ,+D f$,D0R A ,DP-ACQP DAA 4t0/BDD D@  DABA $0_AR0w AA ,1ACQP DAA ,2TAXFP- AAA ,45 ACQP DAA ,d6RAXFP- AAA $ 9wAS@ AA ,x:AXFP AAA ,< ACQP DAA ,=dAXFP- AAA ,L(@ACQP DAA ,|AXAXFP- AAA ,(D ACQP DAA ,FbAXFP AAA , HH ACQP DAA ,<(JbAXFP AAA ,lhLAPDP AAA ,(N8AXFP  AAA $8PAS0 AA ,QAXF@ AAA $$pSAS0 AA ,LTAXF@ AAA ,|VAIL@\ DAA ,8WAIL@\ DAA $WAR0D AA ,0XAOD0p AAA ,4XAOD0p AAA ,dYAGL0e DAA ,pZAGL0e DAA 0[D0R A $[AR0K AA  (\D0R A ,\D0R A L(]D0R A $l]AR0K AA  ^D0R A ^D0R A , _ACQ` DAA ,a%AXDpz AAA ,4dUAHTp DAA <dhWBED D(DP  (D ABBA ,0k ACQP DAA 4mBDD D@  DABA , nACQP DAA ,<pbAXFP AAA ,lr ACQP DAA 4tBDD D@  DABA ,@vACQP DAA , x ACQP DAA ,4z;AXFP AAA ,d| ACQP DAA ,}dAXFP AAA ,0 ACQP DAA ,dAXFP AAA ,$P ACQP DAA ,T0dAXFP AAA ,pACQP DAA ,@hAXFP AAA 4BPA D`h  AABA 4hBAD GP?  AABA ,TPACQP DAA 4 BDD D@  DABA ,ACQP DAA , ACQP DAA ,hbAXFP AAA ,LACQP DAA ,|xdAXFP AAA ,ACQP DAA 4BDD D@  DABA ,`AOD0p AAA ,D AOD0p AAA ,tAOD0p AAA ,AOD0p AAA ,`AOD0p AAA , AOD0p AAA ,4 AOD0p AAA ,d AOD0p AAA , `AOD0p AAA , AOD0p AAA , AOD0p AAA ,$!AOD0p AAA 4T!`BPA F0  DABA ,!HaL A $!wMN G ,!jM]C A "@:Ac E PD4"`yBFE A(A0DP~ 0A(A BBBG ,|"ADG  AAA ,"HM[`! A L"BBB B(A0J8G 8A0A(B BBBA 4,#HBAD D0  DABA ,d#@WADD0u AAA ,#pAEJ C DAA ,#sAD F EE \AD#BIB A(A0T 0D(A BBBA D<$hBBE A(A0D`] 0A(A BBBA ,$BFA e ABA $$ND& A  A $t$=$ %LG E I A 4%D A T%@Fl%x_<%ũBUB K(H0w(A BBE,%^BGA L ABA %3D &1BEB B(A0A8  0A(B BBBH DT&BHB B(A0A8 0A(B BBFA &XDUwL& BBE B(D0A8J p 8D0A(B BBBA  ' RHq,'JD'N\'Nt''x'p'h'`'((((4(L(d(|( ( (((0(8(,  )!$$)H^ A I E L)d){ |)4)PBEG D(u AEBL)x~ BOB E(A0A8J@m 8A0A(B BBBE L*ͧBIB B(D0G8Jp{8A0A(B BBBDl*X&BEB B(A0A8< 0A(B BBBA D* , BOB B(A0A8 0A(B BBBF ,*6BBAD wAB,,+7@BAD uAB\+h74t+7PBEG D(u AEB\+8#BHB B(A0A8 0A(B EBBA z 0A(B EBBJ L ,?9 BEB F(G0D8G 8A0A(B BBBA L\,H7 BEB B(A0A8I 8A0A(B BBBA ,bL,pQBHE B(E0H8D` 8A0A(B BBBA D-BFI B(E0D8GP8A0A(B BBBD\-BEI E(D0D8G@k8A0A(B BBB-QBEB E(D0D8GPT 8A0A(B BBBA D 8G0A(L BBBE D 8G0A(B EBBE D8I0A(B BBB$4.hwML ~ A D\.QBIE K(K0A8 0A(B BBBA .TP<.HTBLA A(G@h (A ABBA L.gBEB B(A0F8Gp 8A0A(B BBBF ,L/XpMZ`G B |/X/t/5-D h/W-D h/2WAs B T4/ihALD t AAB DKAL40WBBB B(A0D8J 8A0A(B BBBA 40IqBEI D(DpR(A ABB0u,0s8AJJ Z AAA 1s41sBID G0k  AABA <T10tBEA I(G0} (A ABBA $1t>AGI jAA1t(41jBBD I(G0b(A ABB$ 2tH[ } A ,42@uANG e AAA $d2[-ADD aAA2X2pu22Pu 2Hu 3@u 3X43L3d3 |3t3t 3t333t  4t$4t<4hT4`l4X!4}4t34@t34J48 48t50t ,5D5 \5ޢt5s 555 5 b5x6AO H \ 6k$6 <6T6 l6 6 66r666xr7| ,7o D7b \7(rt7 7%,7AR A T D C A 70u7qS88hU48qG$L8IN0 A t8q8xrA$8@CA H  A 8NAG DA48hrBDD G0o  AABA 4$9rBDC G0n  AABA \9s>$t9kAG d AA 49 MMNp| E  E  E 9rdDM A L90sBEB B(A0A8J`g 8D0A(B BBBA LD:؞&BOE E(D0A8G8A0A(B BBB:u`DI A $:uAAHG nAA4:uHAAD l GAE DCA$;vcADD WAA4<;mAAG e DAE rAA,t;;BDA G0 AAB;5,;uUAAG0\ AAA ,;ADG g AAK $<v5AAG iAAD<vAVd<vAV,<vzADG Y AAA $<@wRAFG AAA<<xwBEA G(I0q (A ABBA ='fAG \A<=m4T=BAD G0  DABA L=8 BBB B(D0D8J 8A0A(B BBBH ==p$ >hMN@ A ,4>wAAG0q AAA |d>wBBB B(A0A8G` 8A0A(B BBBE K 8A0A(B BBBJ  8A0A(B BBBA |>{BBB B(A0A8G` 8A0A(B BBBJ ] 8A0A(B BBBE x 8A0A(B BBBA ld?BBB D(D0G@  0G(A BBBE R 0G(A BBBJ o 0A(A BBBA |?`DBBB B(A0A8G` 8A0A(B BBBE F 8A0A(B BBBJ s 8A0A(B BBBA $T@0HV0 G ,|@MAAG g AAA @BEE D(D0g (A BBBE Y (A BBBE i (A BBBH L (A BBBE A(A BBBL4APuBBE B(A0D8J 8A0A(B BBBH $AMV@ E LAdBBB B(D0D8JO 8A0A(B BBBE LAzBBB E(D0D8J= 8D0A(B BBBA ,LB.AG l AA m AE t|BX7BBE D(D0 (A BBBA J (K BBBG L (A BBBE A (A BBBH B / C8/$$C@@MMI0M A ,LCX M[@r F  E \|CBBE D(D0z (A BBBA Q (A BBGE S(A BBBLCxBED D(G0i (G ABEE d (A ABBA L,DBED D(G0i (G ABEE m(A ABB\|DpBED D(G0O (G AHBE D (G AHBE R(A ABBDAML c,DDADG0c AAA ,,EMV0N E t A l$\EBADG0sAALEěBEB E(D0A8J8A0A(B BBBLEBEB B(A0D8J8A0A(B BBB4$FBED D(G`(A ABB,\FhMV0K E t A k,FDADG0c AAA ,FMMMD`o A FHML j G$Gۦ,cNc^cnc~cccccccccdd.d>dNd^dnd~dddddddddee.e>eNe^ene~eeeeeeeeeff.f>fNf^fnf~fffffffffgg.g>gNg^gng~ggggggggghh.h>hNhDecimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> C decimal arithmetic moduleexp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. conjugate($self, /) -- Return self. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') as_tuple($self, /) -- Return a tuple representation of the number. as_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. abs($self, x, /) -- Return the absolute value of x. exp($self, x, /) -- Return e ** x. ln($self, x, /) -- Return the natural (base e) logarithm of x. log10($self, x, /) -- Return the base 10 logarithm of x. minus($self, x, /) -- Minus corresponds to the unary prefix minus operator in Python, but applies the context to the result. next_minus($self, x, /) -- Return the largest representable number smaller than x. next_plus($self, x, /) -- Return the smallest representable number larger than x. normalize($self, x, /) -- Reduce x to its simplest form. Alias for reduce(x). plus($self, x, /) -- Plus corresponds to the unary prefix plus operator in Python, but applies the context to the result. to_integral($self, x, /) -- Identical to to_integral_value(x). to_integral_exact($self, x, /) -- Round to an integer. Signal if the result is rounded or inexact. to_integral_value($self, x, /) -- Round to an integer. sqrt($self, x, /) -- Square root of a non-negative number to context precision. add($self, x, y, /) -- Return the sum of x and y. compare($self, x, y, /) -- Compare x and y numerically. compare_signal($self, x, y, /) -- Compare x and y numerically. All NaNs signal. divide($self, x, y, /) -- Return x divided by y. divide_int($self, x, y, /) -- Return x divided by y, truncated to an integer. divmod($self, x, y, /) -- Return quotient and remainder of the division x / y. max($self, x, y, /) -- Compare the values numerically and return the maximum. max_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. min($self, x, y, /) -- Compare the values numerically and return the minimum. min_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. multiply($self, x, y, /) -- Return the product of x and y. next_toward($self, x, y, /) -- Return the number closest to x, in the direction towards y. quantize($self, x, y, /) -- Return a value equal to x (rounded), having the exponent of y. remainder($self, x, y, /) -- Return the remainder from integer division. The sign of the result, if non-zero, is the same as that of the original dividend. remainder_near($self, x, y, /) -- Return x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its sign will be the sign of x). subtract($self, x, y, /) -- Return the difference between x and y. power($self, /, a, b, modulo=None) -- Compute a**b. If 'a' is negative, then 'b' must be integral. The result will be inexact unless 'a' is integral and the result is finite and can be expressed exactly in 'precision' digits. In the Python version the result is always correctly rounded, in the C version the result is almost always correctly rounded. If modulo is given, compute (a**b) % modulo. The following restrictions hold: * all three arguments must be integral * 'b' must be nonnegative * at least one of 'a' or 'b' must be nonzero * modulo must be nonzero and less than 10**prec in absolute value fma($self, x, y, z, /) -- Return x multiplied by y, plus z. Etiny($self, /) -- Return a value equal to Emin - prec + 1, which is the minimum exponent value for subnormal results. When underflow occurs, the exponent is set to Etiny. Etop($self, /) -- Return a value equal to Emax - prec + 1. This is the maximum exponent if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must not be negative. radix($self, /) -- Return 10. is_canonical($self, x, /) -- Return True if x is canonical, False otherwise. is_finite($self, x, /) -- Return True if x is finite, False otherwise. is_infinite($self, x, /) -- Return True if x is infinite, False otherwise. is_nan($self, x, /) -- Return True if x is a qNaN or sNaN, False otherwise. is_normal($self, x, /) -- Return True if x is a normal number, False otherwise. is_qnan($self, x, /) -- Return True if x is a quiet NaN, False otherwise. is_signed($self, x, /) -- Return True if x is negative, False otherwise. is_snan($self, x, /) -- Return True if x is a signaling NaN, False otherwise. is_subnormal($self, x, /) -- Return True if x is subnormal, False otherwise. is_zero($self, x, /) -- Return True if x is a zero, False otherwise. canonical($self, x, /) -- Return a new instance of x. copy_abs($self, x, /) -- Return a copy of x with the sign set to 0. copy_decimal($self, x, /) -- Return a copy of Decimal x. copy_negate($self, x, /) -- Return a copy of x with the sign inverted. logb($self, x, /) -- Return the exponent of the magnitude of the operand's MSD. logical_invert($self, x, /) -- Invert all digits of x. number_class($self, x, /) -- Return an indication of the class of x. to_sci_string($self, x, /) -- Convert a number to a string using scientific notation. to_eng_string($self, x, /) -- Convert a number to a string, using engineering notation. compare_total($self, x, y, /) -- Compare x and y using their abstract representation. compare_total_mag($self, x, y, /) -- Compare x and y using their abstract representation, ignoring sign. copy_sign($self, x, y, /) -- Copy the sign from y to x. logical_and($self, x, y, /) -- Digit-wise and of x and y. logical_or($self, x, y, /) -- Digit-wise or of x and y. logical_xor($self, x, y, /) -- Digit-wise xor of x and y. rotate($self, x, y, /) -- Return a copy of x, rotated by y places. same_quantum($self, x, y, /) -- Return True if the two operands have the same exponent. scaleb($self, x, y, /) -- Return the first operand after adding the second value to its exp. shift($self, x, y, /) -- Return a copy of x, shifted by y places. clear_flags($self, /) -- Reset all flags to False. clear_traps($self, /) -- Set all traps to False. copy($self, /) -- Return a duplicate of the context with all flags cleared. create_decimal($self, num="0", /) -- Create a new Decimal instance from num, using self as the context. Unlike the Decimal constructor, this function observes the context limits. create_decimal_from_float($self, f, /) -- Create a new Decimal instance from float f. Unlike the Decimal.from_float() class method, this function observes the context limits. getcontext($module, /) -- Get the current default context. setcontext($module, context, /) -- Set a new default context. localcontext($module, /, ctx=None) -- Return a context manager that will set the default context to a copy of ctx on entry to the with-statement and restore the previous default context when exiting the with-statement. If no context is specified, a copy of the current default context is used. jh0vP p$p@ $@q$@y$0j`Pmpp{ `$y$$n!j $8jah@$Dm`$mnp $$XjPjqjijjjjjjj@j jj@jjjjXjPjkjkk8k0kRkJkakc jkc skXLI|k8>krlmkkFgkFgkFgkFgkFgkFgkFgkFgkFgkFgFgFgFgFgFgFgkkFgkFgkkFgkFgkFgkFgkFgkFgkFgkFgFgkFgkFgFgFgFgFgFgFgkkkkkknnjXjjXjXjXjjXjXjXjqjjjjlFg@[!p*PG@и0 kpLk $k $kp@ $k $k $k$k`@$kЭ$l``$ l$%lV`$-lPR`$kA$$n@@$m B$Qh` C$mPmPmpmpkm0mmйmml n`n`nlg@D$kfD$keD$kd E$kc`E$kbE$ka@F$kaF$k`G$k _G$k0^G$l _`H$ l@]H$n0YI$%lT@I$-l@PI$#n@NI$*npJ J$5n0DJ$k?J$