ELF>$@@8 @pp ]^]^  4ȍȝȝ $$Std PtdЂЂЂDDQtdRtdppGNUGNU3f. X{\fDf.zjfTYfVYf.X{@1Df. Xzu fDf.uuf.Sf(H ~/Y $fTD$d$E Wd$T$Hf.,$~XfTf.Wf/w f/ Wf(T$YY $\XWT$D$$f( HT$H fH~[fHnfHnf.f(1$%HH)HHHHHH@H fHnfHn[fWf/vzf/vtff/w f/$f(ÿ5T$d$d$5D$f(L$T\VT$D$ $f(T$\$d$hf/xVT$rx pVf/rjd$\$ $f/wf(f(Vf(T$Y\XYXf(RYUT$D$KT$T$D$,$f(6!HUfH~}ff.@Sf(f(f(H0~-gV%?UfTf.fD(fDTfA.ff/fD$L$L$ DD$@HUT$|$Hf/DD$\$ fD/f.TA; UfA/(ff.!5Tf|$T$T$f(J|$f(9HH)HHHHHH@H0[fHnfHnfD Tf(T$|$YYT$5%T|$Yf(^^~TfWfTfVTfWfH~fH~H0fHnfHn[ pSf(f(|$(YT$ \YSf(L$Yd$X^PT$ XSL$5gS|$(Y=ySYd$Yf(\t$t$f(fWSYR&H|$H|$4H0[f.fA(Qd$ffA.HRf(DD$|$fHnpf|$DD$f.f(QD$|$DD$^DD$~2SHcRf(fA(fWfWfHnt$z%Q|$~Rt$Yf(fTfUfV fA(|$DD$|$DD$|$ L$DD$|$ L$DD$fDHHoH5 PH81Hff.@SHH5OH`dH%(HD$X1HT$@CA1E\$@~QL$H=PHf(fTf(f.fTf.f(\$L$RL$D$f(-\$f/PD$Sf(~BQf(D$YYL$f(fTf.OhfTf.OVf.%Ov&5Of.rff.JD@f(l$L$d$ \$L$f(l$AHH)DHHHHf.-FOHw+f(BHL$XdH3 %(H`[5Od$ \$f. !D\Nf(/t$YOf(~OYYL$f(YYf.H9m"H5MH81;Df/f(H|$8Ht$0l$\$d$D$0~=kOL$8~5Of(d$\$fTfTl$fVfVf.-Mf.%Mf/Mf(l$(\$ d$L$~5NL$f(fTf(T$Z~5NT$f(d$\$ l$(fTVH8f(~PN%(Mf(fTfTf.f(f.f/-Ml$f(H|$(Ht$ $l$$Y-MMT$(t$ fTMfVMT$t$$f(T$YMYT$YT$$L$H8fDf.f(T$l$ $< $f(,AHH)DHH}HHHD$ $1T$ $H KD$fHnf.l$f.!H8f.Hff.z8f(\$L$IL$$f(E$\$fXf/YBKf(fT fLwKL$$\$L$H8fDf(\$ $ $D$f(h\$$f(d$$-Jf(Yf(^f(YYXXY^^YYT$$fATHH5TIE1SH(dH%(HD$1Ht2g$L$H!tG"t*IHD$dH3%(u4H(L[A\HqhH5HH8R{I1ATHH5HE1SH(dH%(HD$1HtVD$ $~JHfW~zJf(f(fW˃!tG"t*f()IHD$dH3%(u0H(L[A\HgH5GH8Iaf(f(f(H(~=I HfTf.2f(fTf. ff.E„tf.DЄ/ Hf/v f/O Ht$d$YT$Yf($O$fT$d$t$X~=If.f(Qf(Xf(f/f(XfT-I^fTfVf(T$$$T$H(fH~fH~fHnfHnfDT$4$4$f(\T$f(KHH)HH{HHHH@fHnfHnH(ff/w f/f(ÿ5T$t$d$0d$5$f(f($X$fd$t$T$f.f(Qf($$T$t$$$t$fT$~=`G]fH~fH~ffTfVf(f([T$t$L$$$/T$$$f~=Ft$L$L$$$T$t$L$$$ff.ATHH5DE1SH(dH%(HD$1Ht2$L$Hn!tG"t*=IHD$dH3%(u4H(L[A\HcH5CH8IqHH~Ef(f(=DfTfTf.f.f/0Ef(fTEL$fVE\f(\$]\$D$f(YD$L$YDD$f(\$D$f(L$YY DL$SD$~EL$fTf.CwfTf.C"D$HHfDf.C:f(d$\$L$L$f(d$\$AHH)DHHG{HHhl$d$D$\$ zd$f.%CD$v$\$ f.z!L$HHf(H|$8Ht$0\$l$0\$l$l$8f(l$0YD$\$D$f(L$YhfD=hBf.ff.zf(\$(d$ L$#L$D$f(\$(T$f~ FCf(~-Cf/d$ fTfTfVfVf(t$fWDATHH5@E1SH(dH%(HD$1Ht2$L$H~!tG"t*]IHD$dH3%(u4H(L[A\H_H5@H8IATHH5@E1SH(dH%(HD$1H@tVD$ $~AHfW~Af(f(fW˃!tG"t*f(IHD$dH3%(u0H(L[A\H_H5M?H8 IHH~DAf(f(5@fTfTf.f.f/@f(fTAL$fV A\f(T$T$D$f(YD$L$Y,@D$f(eT$D$f(L$YY ?L$D$~e@L$fTf.3?wfTf.%?"D$HHfDf.?:f(d$T$L$L$f(d$T$AHH)DHHHH(Hl$d$L$T$ d$f.%l>L$v$T$ f.z!D$HHf(H|$8Ht$0T$l$0T$l$l$8f(l$PYD$T$D$f(eL$YhfD5=f.ff.zf(T$(d$ L$sL$D$f(NT$(\$ff(~>~->f/d$ fTfTfVfV\$fWff.fATHH5%<E1SH(dH%(HD$1H@t2$L$H~!tG"t*IHD$dH3%(u4H(L[A\H![H5m;H8+IATHH5|;E1SH(dH%(HD$1Ht:gD$ $fW>=H!tO"t*IHD$dH3%(u$X1~i1l$f(fT5w1d$fTfV$f(f(fH~]H$HH0fHnfHn[d$$0$f(d$f(HH)HH6wHHHH@H0[fHnfHn/f(d$fW 0$Xd$$5U/D$L$f(\d$(f(R|$f(D$L$ Y\$Y\uL$\$T$ YT$$Yd$(f(\qfH~$~ /XQ/~/fWd$l$f(fTfTfVfW$7ff.ATHH5-E1SH(dH%(HD$1Ht2g$L$H!tG"t*IHD$dH3%(u4H(L[A\HqLH5,H8R{I1ATHH5-E1SH(dH%(HD$1HtVD$ $~.HfWR~z.f(f(fW˃!tG"t*f()IHD$dH3%(u0H(L[A\HKH5+H8IaSHH5L,H@dH%(HD$81HT$ A1ET$ ~- t,Hf(\$(fTf.fTf. [,f/w f/ K,f(T$\$YY>%,T$\$Xf(f($$$$f(f(HL$8dH3 %(H@[Df($$f(AHH)DHHvHH Hf(f@f(f(\P+T$\$_T$\$D$%+ $f(X3,$d$f(YT$Yf(XYT$D$$f(od$f(X7SHH5$*HPdH%(HD$H1HT$0A1E T$0~%r+D*Hf(\$8fTf.f(fTf.'*f/w f/of(f(\$T$T$ )f(f\$f/l$Y\$Yf(~~*\$XH*l$fWf(fTfUfVf(f(kHL$HdH3 %(rHP[Ðf(\$A\$f(0AHH)DHHvHH(Hf(f.  )\$~%)l$X~)f(fTfTfVfW+D(f(fW )T$ \$\T$ 5i(\$D$XL$f(f(fL$f(D$(D$T$(t$|$Y|$f(YXl$ f(\dl$ f(k`ATH=R9IH$Dl(fA(H5-'LHX({H5&LH91(\H5&LH1>H5&LH1f(f(H5&LH1/H5%LH1f(fH5s&LH' &'-'%&H[' tD%Z'-t-uHKtHTtH]tHftD%tt%t-t%5t%=tD%tFtD %-}tHtHtHtHt t t t t t t t t%t t tD ttt t%(t%0tD /t%/t /t/t /t/t /t /t /t /t5$D$D-}$H^nHgn t t t t t%t t tmD-mmDmmDmmmmD%mm mm5mmmmmmm-m-Cn-[n-n-nHnH nHbnHgnmmm m mm5mmm5mmmm m mm5mmm5mmmm mD"-.nHsnHxn mm5mmmmmmmmmm m mmDmmmmmmmmD mm mm m mH#hH(h m m m m m m mm m m m%gDg%gg%gg%g%g%gD g%g g%g5ggggggg-g-h-vhHgH(hH-hH*hJgJg%Jg Rg Rg%Rg5RgRgRgRgRgRgZgZg%Zg bg bgbg5bgbgbgjgzgzgzg g-gH'hH,h dgdg5dgdgdgdgdgdgdgdgdgdg lg lglgDkgkgkgkgkgkgsg{gD zgzg zgzg zg zg zg-a-a-aHwg WgWg Wg _g _g_g _g _g _g/a5/a/a5/a/a5/a/a7a?aGa GaGa5GaGaGaGaGaGaGaGa-Wa-a-'bHaHaHaHaHaHaHa`` ` ``5`````````` `5aaa aaa 2a-a-a-a-aHaHTaHiaHnaHsaHxaH}aHaHaHa5````````` ` `5`5`5` a5a a a a-DaH1aH>[ ` ` ` ` ` a aZ ZZZZZZZZZ ZZ Z Z ZZZZZZZZZ=HZH[H5[H:[H?[Hd[Hy[ Z Z Z Z ZZZ=Z=ZZZZ Z Z ZZZ=ZZ=ZZZ Z ZHZHc[ Z ZZZZZZZZZ Z Z Z ZZ ZZZZZZZZZ ZZ Z Z Z Z Z ZHZHZHTHTHTHTHTHTHTHTHT JZ RZ RZ RZ RZ RZ RZ2T2T:TJTJT jT jTjTjTjTjTjTjTjTjTHTH$U TT TT TT TT TT TTTTTT=TTTT=TT\T\T \T \T \T \T \T \T\T\T=\T\T=\TdTdT dT dT dT dT dTHU YTYTYTYTYTYTYTYTYT YT YT YT YTYT YTYTYTYTYTYTaTaTaT aTaT aT aT aT aT aT aTaTHfTHNHN HT PT PT PT PT PT PT ND-NNDNNDNN%N-ND%,N,N ,N,N5,N,N,N,N,N,N,N,N,N,N-,N-N-NHeNHN N N N5 N N N% ND N% NNNN N NN5NNN%NN%N!N!N!N )N )N)N5)N-qNHNHN N N N N N N N N N N NNDNNNNNNN"ND !N!N !N!N !N !N !N !N !N !NH^H N N NN N N NG GGG%GG%GGGG GG G G GGGGGGGGG G GHGH(HH5HH:HH?HHTHHYHHVHHcHHhH G G GGGGGGGG G G GGGGGG G G G GGH]HGGGGGGG G G G GG GGGGGGGGG GG G G G G G GG GHGHAHAHAHA G G G G G GnA%nA%vA%~AAAAA AAA%AAAAAAAAAAA AHAHAHAHBHBHB LALA%LALALATAdAdAdAdA dA dAdA%dAdAdAlA|A|A|A|A |A |A|A%|A|A|AHBHBfAfAfAfAfAfAfAfA fA fAfA%fAfAfAfAfAfAnAvAvAvA vAvA%vA vA vA vA vA vA vA vA-^ Hk;H;H;H; BABABA BA BA-;;;-;;-;";";-";-*; 2; 2;2;2;2;2;2;2;2;2; 2; 2; 2;Ho;H;H;H; ; ; ;;;;;;;; ; ; ; ; ; ;;;;&;&; &; &; &; &; &; &;&;&;H{;H;H;H;H;:::::: : : : :=:::=::=:::=:=; ; ; ; ; ;; ; ;H45 ; ; ; ; ;4 444%4%44444 44 4 4 444444444 4 4 4 4H4H4H4H5H 5H 5H5H5H5H5H5H5H5H5H5H5D4D4D4L4L4L4L4|4|4444 4 4444H15H5H544444 4 4 4 44 444444444 44 4 4 4 4 4 4 4 4 4 4 4 4 4LA\f.f.z u鳤HHD:isnanD:isinfD:isfinitemath domain errorD:expmath range errorD:tanhD:tanD:sqrtD:sinhD:sinD:coshD:cosdd:rectD:polarddD:phaseD:log10D|O:logD:atanhD:atanD:asinhD:asinD:acoshD:acospitauinfjnanjabrel_tolabs_tolDD|$dd:isclosecmathtolerances must be non-negative??9B.?7'{O^B@Q?Gz?_? @@Ҽz+#@iW @?Uk@& .>9B.?-DT! @-DT!@!3|@-DT!?|)b,g-DT!?!3|-DT! -DT!-DT!-DT!??-DT!?!3|@-DT! @;D'P`0Фp @4d0` 0\и`0(`Lx@p40`pp<l `(zRx $PFJ w?:*3$"D\@t mH0P H @H0e C ĢH0i G H,AH0 FU B KC 4 *AP@M AQ y KD  AO X!D\ pENp AI (@D@ G  H  G (FND@b DBH (FND@ DBD ,5P05 [ f J (<HFND@b DBH h̵+DP G  H (ظFND@b DBH (\FND@ DBD #DP G  H ( FND@b DBH (4FND@j DBH `$mDf F \ D \ pIQ`3 AB INP AK IN0_ AI (4FND@r DBH @?JOB D(A0D 0D(A BBBD ,`UK{FRAm D 0FDN D@e  DABH 0FDN D@  DABD ,,AP@ KA \ AS ((FND@b DBH (T FND@ DBD )ENP AF EN`J AB |$F$0p%0%ۀ݀߀#-BR} P~oP  ` ( oh oo oQȝ0 @ P ` p !! !0!@!P!`!p!!!!!!!!!"" "0"@"P"`"@This module provides access to mathematical functions for complex numbers.isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0) -- Determine whether two complex numbers are close in value. rel_tol maximum difference for being considered "close", relative to the magnitude of the input values abs_tol maximum difference for being considered "close", regardless of the magnitude of the input values Return True if a is close in value to b, and False otherwise. For the values to be considered close, the difference between them must be smaller than at least one of the tolerances. -inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is not close to anything, even itself. inf and -inf are only close to themselves.isinf($module, z, /) -- Checks if the real or imaginary part of z is infinite.isnan($module, z, /) -- Checks if the real or imaginary part of z not a number (NaN).isfinite($module, z, /) -- Return True if both the real and imaginary parts of z are finite, else False.rect($module, r, phi, /) -- Convert from polar coordinates to rectangular coordinates.polar($module, z, /) -- Convert a complex from rectangular coordinates to polar coordinates. r is the distance from 0 and phi the phase angle.phase($module, z, /) -- Return argument, also known as the phase angle, of a complex.log($module, x, y_obj=None, /) -- The logarithm of z to the given base. If the base not specified, returns the natural logarithm (base e) of z.tanh($module, z, /) -- Return the hyperbolic tangent of z.tan($module, z, /) -- Return the tangent of z.sqrt($module, z, /) -- Return the square root of z.sinh($module, z, /) -- Return the hyperbolic sine of z.sin($module, z, /) -- Return the sine of z.log10($module, z, /) -- Return the base-10 logarithm of z.exp($module, z, /) -- Return the exponential value e**z.cosh($module, z, /) -- Return the hyperbolic cosine of z.cos($module, z, /) -- Return the cosine of z.atanh($module, z, /) -- Return the inverse hyperbolic tangent of z.atan($module, z, /) -- Return the arc tangent of z.asinh($module, z, /) -- Return the inverse hyperbolic sine of z.asin($module, z, /) -- Return the arc sine of z.acosh($module, z, /) -- Return the inverse hyperbolic cosine of z.acos($module, z, /) -- Return the arc cosine of z.`ŀV`T@SR`O`NnDg0D/00@@L'@ '&K @JI|H uFa0@Z?S;@M7F63317c3ca3cfdd3c9712af5188bcd7cef55a334.debug`v.shstrtab.note.gnu.property.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.plt.sec.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.plt.data.bss.gnu_debuglink  $1o(; 8CPPKo ZXoh h g (qB`{ v Pp"p"""@$$YP~P~ ЂЂD( ȝȍȟȏ08@@` p" 4ԟ